TANDON SCHOOL
OF ENGINEERING

NYU

0,

llOOlOOlOlOOLllOLolla

O00LOLO@LLLD
OLLOOLOOLOLOOLI®OLOLRO LOOLOlOOLl[olol[
Q
XY S
N
)700‘\«\“

LAVA: Gy
Large-scale Automated

Vulnerability Addition

\ /‘ Y 4
W o
T &5
! —)\
Engin Kirda Patrick Hulin, Tim Leek,
Andrea Mambrett Fredrich Ulrich, Ryan Whelan
Wil Robertson Brendan Dolan-Gavitt redric Ich, Ry
NYU Tandon MIT Lincoln Laboratory

Northeastern University

This Talk

!

NYU

¥ In this talk, we explore how to automatically add
large numbers of bugs to programs

¥ Why would we want to do this?
¥ Computer programs don't have enough bugs

¥ We want to put backdoors in other people's
programs

LAVA: Large-Scale Automated Vulnerability Addition

This Talk

!

NYU

¥ In this talk, we explore how to automatically add
large numbers of bugs to programs

¥ Why would we want to do this?
¥ -Comptterprograms-donthave-enough-bugs—

¥ We want to put backdoors in other people's
programs

LAVA: Large-Scale Automated Vulnerability Addition

This Talk

!

NYU

¥ In this talk, we explore how to automatically add
large numbers of bugs to programs

¥ Why would we want to do this?
¥ -Comptterprograms-donthave-enough-bugs—

¥ We-wantto-put-backdoorsin-otherpeople's—
programs-

LAVA: Large-Scale Automated Vulnerability Addition

@ Vulnerability Discovery

!
NYU

¥ Finding vulnerabillities in software automatically has
been a major research and industry goal for the
last 25 years

Academic Commercial

4 klocwork' 7/ Secure

An Empirical Study of the Reliability

of
UNIX Utilities

FORTIFY VERACOIDE
{) coverity’

Fuzzing (1989) e
Driller (2015)

LAVA: Large-Scale Automated Vulnerability Addition

Vulnerability Discovery
NYU

¥ Finding vulnerabillities in software automatically has
been a major research and industry goal for the
last 25 years

Academic Commercial

% klocwork ‘Secure

Does thls Work’?? "

Fuzzing (1989)

DriIIer (2015)

LAVA: Large-Scale Automated Vulnerability Addition

g// Debugging the Bug Finders
NYU

¥ Lots of work that claims to Pnd bugs in programs

¥ Lack of ground truth makes it very difPcult to
evaluate these claims

¥ If Coverity bPnds 22 bugs in my program, Is that
good or bad?

¥ What are the false positive and false negative
rates?

LAVA: Large-Scale Automated Vulnerability Addition

. . 5
(?/ EXisting Test Corpora
¢ A\ W .
m}ﬁaspb% 1 Some existing bug
\/ FRame ﬂﬂ.& corpora exist, but have
many problems:
Vit ol Synthetic (small
Vulnerabili y |
K\' \-/—J Lt programs
EKP[“ITQ ¥ Don't always have
DATABASE triggering inputs
NIST ¥ Fixed size D tools can
S OoverbtO to the corpus

LAVA: Large-Scale Automated Vulnerability Addition

(%// What About Real Vulnerabilities? °

NYU

¥ Real vulnerabillities with proof-of-concept exploits
are essentially what we want

¥ But there just aren't that many of them. And Pnding
new ones Is expensive!

ADOBE READER $5,000-%$30,000
MAC OSX $20,000-%50,000
ANDROID $30,000-%$60,000
FLASH OR JAVA BROWSER PLUG-INS $40,000-%$100,000
MICROSOFT WORD $50,000-%100,000
WINDOWS $60,000-%$120,000
FIREFOX OR SAFARI $60,000-%150,000
CHROME OR INTERNET EXPLORER $80,000-%200,000
10S $100,000-$250,000

Forbes, 2012

LAVA: Large-Scale Automated Vulnerability Addition

(§// Debugging the Bug Finders
NYU

¥ EXisting corpora are bxed size and static D!it's easy
to optimize to the benchmark

¥ Instead we would like to automatically create bug
corpora

¥ Take an existing program and automatically add
new bugs Into It

¥ Now we can measure how many of our bugs they
Pnd to estimate effectiveness of bug-bnders

LAVA: Large-Scale Automated Vulnerability Addition

Goals)

NYU

¥ We want to produce bugs that are:

¥ Plentiful (can put 1000s into a program easily)
¥ Distributed throughout the program

¥ Come with a triggering input

¥ Only manifest for a tiny fraction of inputs

¥ Are likely to be security-critical

LAVA: Large-Scale Automated Vulnerability Addition

@ Sounds Simple... But Not

!
NYU

¥ Why not just change all the strncpys to
strcpys ?

¥ Turns out this breaks most programs for every
input Bltrivial to bnd the bugs

¥ We won't know how to trigger the bugs D'hard to
prove they're "real" and security-relevant

¥ This applies to most local , random mutations

LAVA: Large-Scale Automated Vulnerability Addition

10

& Our Approach: DUAs

!
NYU

¥ We want to Pnd parts of the program's input data that are:

¥ Dead: not currently used much in the program (i.e., we can set
to arbitrary values)

¥ Uncomplicated: not altered very much (i.e., we can predict their
value throughout the program'’s lifetime)

¥ Available In some program variables

¥ These properties try to capture the notion of attacker-controlled
data

¥ If we can bnd these DUAs, we will be able to add code to the
program that uses such data to trigger a bug

LAVA: Large-Scale Automated Vulnerability Addition

11

M New Taint-Based Measures

!
NYU

¥ How do we bnd out what data Is dead and
uncomplicated ?

¥ Two new taint-based measures:

¥ [iveness:. a count of how many times some input
byte Is used to decide a branch

¥ Jaint compute number. a measure of how much
computation been done on some data

LAVA: Large-Scale Automated Vulnerability Addition

W

!
NYU

¥ We use dynamic taint analysis to
understand the effect of input data
on the program

¥ Our taint analysis requires some
specibc features:

¥ Large number of labels available
¥ Taint tracks /abel sets
¥ Whole-system & fast (enough)

¥ Our open-source dynamic analysis
platform, PANDA, provides all of
these features

Dynamic Taint Analysis

“—

12

c=a+b;a {wx};b:{yz}

ht

c! {wxy,z}

DN\ =

tps://github.com/movix/panda

LAVA: Large-Scale Automated Vulnerability Addition

https://github.com/moyix/panda

‘2 Taint Compute Number (TCN) -

NYU

/[a,b,n areinputs

1:int [o = aib]

2:1f (a !'= Oxdeadbeef)
3: return;

4: for (int i=0; i<n; i++)
5:

n-1 -

TCN measures how much combutation has been
done on a variable at a given point in the program

LAVA: Large-Scale Automated Vulnerability Addition

Liveness n

NYU /[a,b,n areinputs

" int ¢ = a+t+b;

#'1f |(a !'= Oxdeadbeef)

$" return;

%"for (int 1=0; i++)

&" ct+=s[1i];
b: bytes {0..3} (0..3) 0
n. bytes {4..7} (4.7))
a: bytes {8..11} (8..11) .

Liveness measures how many
branches use each input byte

LAVA: Large-Scale Automated Vulnerability Addition

15

Attack Point (ATP)

NYU

¥ An Attack Point (ATP) Is any place where we may
want to use attacker-controlled data to cause a bug

¥ Examples: pointer dereference, data copying,
memory allocation, ...

¥ In current LAVA implementation we just modify
pointer dereferences to cause buffer overf3ow

LAVA: Large-Scale Automated Vulnerability Addition

1 Approach: Overview

!
NYU

' &HD

2@AB@% +*(-+$%

?@AB@% +*/.&C%
D%'&"#8%&.C0"0%

- &HD

1#0'+46*#'%0-4+(*%
8"!9%&"#!%:4*+"*O

V

>SA#%"#0'+46*#'*$%
[+-5+&6%-#%"#/4'0

!

"#$%8." & ()*+ |
(-#'+-. %S &'&
&HSYRE ()%l -"#'0

1#/4'%(-+/40

-

v

—
~
1#2*('&3.*%

\ 4

1#2*('%345%"#'-%
[+-5+&6%0-4+(*7
(-6/" *%&HS$ '*0'%

8"9066-$":"*$96"#/4'

3450
~_

\

LAVA: Large-Scale Automated Vulnerability Addition

16

L AVA Bugs !

NYU

¥ Any (DUA, ATP) pair where the DUA occurs before
the attack point Is a potential bug we can inject

¥ By modifying the source to add new data (3ow the
from DUA to the attack point we can create a bug

DUA + ATP =

LAVA: Large-Scale Automated Vulnerability Addition

18

@ LAVA Bug Example

!
NYU

¥ PANDA taint analysis shows that bytes 0-3 of buf on
line 115 of src/encoding.c Is attacker-controlled

(dead & uncomplicated)

¥ From PANDA we also see that inreadcdf.c line 365
there Is a read from a pointer b if we modify the pointer
value we will likely cause a bug in the program

"SRR ($))H+8, (HH

encoding.c 115: } else if (looks_ extended (buf, nbytes,

*ubuf, ulen)) {
=) "01+&("
o= \ 2&3(,#"#(4+)3

readcdf.c 365: if (cdf read header(&info, &h) == -1)

LAVA: Large-Scale Automated Vulnerability Addition

19

@ LAVA Bug Example

!
NYU

¥ PANDA taint analysis shows that bytes 0-3 of buf on
line 115 of src/encoding.c Is attacker-controlled

(dead & uncomplicated)

¥ From PANDA we also see that inreadcdf.c line 365
there Is a read from a pointer b if we modify the pointer
value we will likely cause a bug in the program

288034%#+3",8#"))*/+/0&0

encoding.c 115:} elseif (looks_extended (buf , nbytes ,
*ubuf , ulen)) { \
S -+ +/080+1)"
%", &*#
readcdf.c 365:if (cdf _read _header (&info,&h) == -1)

LAVA: Large-Scale Automated Vulnerability Addition

20

LAVA Bug Example

/I encoding.c
NYU |
({ int rv =
looks extended (buf, nbytes ,* ubuf, ulen);
if (buf) {
int lava = 0;
lava |= ((unsigned char *) buf)[O];
lava |= ((unsigned char *) buf)[1] << 8§;
lava |= ((unsigned char * Ybuf)[2] << 16;
lava |= ((unsigned char * Ybuf)[3] << 24;
lava_set (lava);
Eoov D)o
Il readcdf.c
if (cdf read header
((&nfo) +(lava _get () *
(Ox6c617661 == lava_get ()) || Ox6176616¢c == lava_get ())),
&) == -1)

When the input Ple data that ends up In buf Is set
to Ox6c6176¢1, we will add Ox6¢c6176¢l to the
pointer info, causing an out of bounds access

LAVA: Large-Scale Automated Vulnerability Addition

78 Evaluation: How Many Bugs? ~

!

Num Lines Potential | Validated Inj Time
NYU Name | Version | Src Files| C code | N(DUA) | N(ATP) | Bugs Bugs Yield (sec)
Ple 5.22 19 10809 631 114 17518 774 38.7% 16
readelf 2.25 12 21052 3849 266 276367 1064 53.2 % 354
bash 4.3 143 98871 3832 604 447645 192 9.6% 153
tshark | 1.8.2 1272 | 2186252| 9853 1037 354 542

¥ We ran four open-source programs each on a
single input and generated candidate bugs

¥ Because validating all possible bugs would take
too long, we Iinstead validated a random sample of
2000 per program

¥ Result: extrapolating from the yield numbers, a
single run gives us up to ~200,000 real bugs

LAVA: Large-Scale Automated Vulnerability Addition

(?fz Evaluation: What InfSuences Yield’?22

mLIV
NYL{ mTCN [0,10) | [10,100) | [100,1000) | [1000, +inf]
* 10, 10) 51.9% | 22.9% 17.4% 11.9%
ag10, 100) D 0 0 0
100, +inf] | B D D 0

¥ TCN strongly affects yield

¥ No bugs that involved TCN greater than 10 were
useable

¥ Liveness has a weaker correlation with yield P'even
fairly live data can be sometimes be used if TCN Is

low

LAVA: Large-Scale Automated Vulnerability Addition

8 Evaluation: Can Tools Find Them?23

!

NYU

¥ We took two open-source bug-Pnding tools and
tried to measure their success at Pnding LAVA
bugs

¥ A coverage-guided fuzzer (FUZZER)

¥ A symbolic execution and constraint solving tool
(SES)

¥ (Actual names withheld since this is just a
preliminary study)

LAVA: Large-Scale Automated Vulnerability Addition

!

Results: Specibc Value

24

NYU

Unigue Bugs Found
Program | Total BUgS | t,77eR | SES | Combined
uniqg 28 14 0 7
baseb64 44 I 9 14
md5sum 57 2 0 2
who 2136 0 18 18
Total 2265 16 27 41

Less than 2% of injected bugs found

LAVA: Large-Scale Automated Vulnerability Addition

(%// Results: Range-Triggered Bugs ”

NYU
Tool Bug Type
Range
20 27 214 221 228 KT
FUZZER | O 0 9% | 79% | 75% | 20%
SES 8% | O 9% | 21% | O 10%

LAVA: Large-Scale Automated Vulnerability Addition

2z Evaluation: Realism 0

!
NYU

¥ The burning question in everyone's mind now: are these bugs
realistic ?

¥ This Is hard to measure, in part because realism is not a well-
debned property!

¥ Our evaluation looks at:
¥ How Injected bugs are distributed in the program
¥ What proportion of the trace has normal data [3ow

¥ Ultimately, the best test of realism will be whether it helps bug-
Pnding software get better

LAVA: Large-Scale Automated Vulnerability Addition

. 27
Results: Realism

NYU

] _
3 10
: - -
— 0
3 oo g
g 8 £ g
] <
o
8 h —
S
o — — [—1— % _ 1 — L [—{ 1 |
| | I I I S | | | | |
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
I(DUA) I((ATP)
) . . .
Y Fig. 10: Normalized DUA trace location Fig. 11: Normalized ATP trace location
-
e ~
\
/
I "
"4 H%

&' O)*+,-.+01)(

LAVA: Large-Scale Automated Vulnerability Addition

@ Limitations and Caveats °

!
NYU

¥ General limitations:

¥ Some types of vulnerabillities probably can't be injected using
this method b e.g., weak crypto bugs

¥ More work Is needed to see if these bugs can improve bug-
Pnding software

¥ Implementation limits:
¥ Currently only works on C/C++ programs in Linux
¥ Only injects buffer overf3ow bugs

¥ Works only on source code

LAVA: Large-Scale Automated Vulnerability Addition

29

Future Work

!
NYU

¥ Continuous on-line competition to encourage
self-evaluation

¥ Use In security competitions like Capture the
Flag to re-use and construct challenges on-
the-Ry

LELECINIERE 2SN

¥ Improve and assess realism of LAVA bugs

¥ More types of vulnerabilities (use after free,
command injection, ...)

¥ More interesting effects (prove exploitability!)

LAVA: Large-Scale Automated Vulnerability Addition

30

Conclusions

!

NYU

¥ Presented a new technique that is capable of
quickly Injecting massive numbers of bugs

¥ Demonstrated that current tools are not very good
at bnding these bugs

¥ If these bugs prove to be good stand-ins for real-
world vulnerabillities, we can get huge, on-demand

bug corpora

LAVA: Large-Scale Automated Vulnerability Addition

. 31
Questions?

?
? o, 7D
? BN
? 5§ 3§
) %70\%“\Q 7

llOOlOOlOlOOlllOLollo

OOLOLO@LLLD
0110000101001 oLotRodi00L0L00L L1y,
Io
Q [—J
\ P
S
000\

LAVA: Large-Scale Automated Vulnerability Addition

