
LAVA:
Large-scale Automated
Vulnerability Addition

Brendan Dolan-Gavitt

Engin Kirda
Andrea Mambretti

Wil Robertson

Patrick Hulin, Tim Leek,
Fredrich Ulrich, Ryan Whelan

MIT Lincoln LaboratoryNYU TandonNortheastern University

LAVA: Large-Scale Automated Vulnerability Addition

This Talk

¥ In this talk, we explore how to automatically add
large numbers of bugs to programs

¥ Why would we want to do this?

¥ Computer programs don't have enough bugs

¥ We want to put backdoors in other people's
programs

2

LAVA: Large-Scale Automated Vulnerability Addition

This Talk

¥ In this talk, we explore how to automatically add
large numbers of bugs to programs

¥ Why would we want to do this?

¥ Computer programs don't have enough bugs

¥ We want to put backdoors in other people's
programs

2

LAVA: Large-Scale Automated Vulnerability Addition

This Talk

¥ In this talk, we explore how to automatically add
large numbers of bugs to programs

¥ Why would we want to do this?

¥ Computer programs don't have enough bugs

¥ We want to put backdoors in other people's
programs

2

LAVA: Large-Scale Automated Vulnerability Addition

Vulnerability Discovery

¥ Finding vulnerabilities in software automatically has
been a major research and industry goal for the
last 25 years

3

CommercialAcademic

An Empirical Study of the Reliability

of

UNIX Utilities

BartonP. Miller
bart@cs.wisc.edu

LarsFredriksen
L.Fredriksen@att.com

BryanSo
so@cs.wisc.edu

Summary

Operatingsystemfacilities, suchasthe kernelandutility programs,are typically assumedto be reliable. In

our recentexperiments,we havebeenableto crash25-33%of theutility programsonanyversionof UNIX thatwas

tested.This reportdescribesthesetestsandananalysisof theprogrambugsthatcausedthecrashes.

Content Indicators

D.2.5(TestingandDebugging),D.4.9(ProgramsandUtilities), Generalterm:reliability, UNIX.

Researchsupportedin part by National ScienceFoundationgrantsCCR-8703373and CCR-8815928,OfÞceof Naval Researchgrant
N00014-89-J-1222,andaDigital EquipmentCorporationExternalResearchGrant.

Copyright! 1989Miller, Fredriksen,andSo.

Driller: Augmenting
Fuzzing Through Selective Symbolic Execution

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna

UC Santa Barbara
{ stephens,jmg,salls,dutcher,Þsh,jacopo,yans,chris,vigna} @cs.ucsb.edu

AbstractÑMemory corruption vulnerabilities are an ever-
present risk in software, which attackers can exploit to obtain
unauthorized access to conÞdential information. As products
with access to sensitive data are becoming more prevalent, the
number of potentially exploitable systems is also increasing,
resulting in a greater need for automated software vetting tools.
DARPA recently funded a competition, with millions of dollars
in prize money, to further research focusing on automated
vulnerability Þnding and patching, showing the importance of
research in this area. Current techniques for Þnding potential
bugs include static, dynamic, and concolic analysis systems,
which each having their own advantages and disadvantages. A
common limitation of systems designed to create inputs which
trigger vulnerabilities is that they only Þnd shallow bugs and
struggle to exercise deeper paths in executables.

We present Driller, a hybrid vulnerability excavation tool
which leverages fuzzing and selective concolic execution in
a complementary manner, to Þnd deeper bugs. Inexpensive
fuzzing is used to exercisecompartments of an application, while
concolic execution is used to generate inputs which satisfy the
complex checks separating the compartments. By combining the
strengths of the two techniques, we mitigate their weaknesses,
avoiding the path explosion inherent in concolic analysis and the
incompleteness of fuzzing. Driller uses selective concolic execution
to explore only the paths deemed interesting by the fuzzer and to
generate inputs for conditions that the fuzzer cannot satisfy. We
evaluate Driller on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge and show its
efÞcacy by identifying the same number of vulnerabilities, in
the same time, as the top-scoring team of the qualifying event.

I. I NTRODUCTION

Despite efforts to increase the resilience of software
against security ßaws, vulnerabilities in software are still
commonplace. In fact, in recent years, the occurrence of
security vulnerabilities has increased to an all-time high [28].
Furthermore, despite the introduction of memory corruption
and execution redirection mitigation techniques, such software
ßaws account for over a third of all vulnerabilities discovered
in the last year [14].

Whereas such vulnerabilities used to be exploited by
independent hackers who wanted to push the limits of
security and expose ineffective protections, the modern world
has moved to nation states and cybercriminals using such
vulnerabilities for strategic advantage or proÞt. Furthermore,
with the rise of theInternet of Things, the number of devices
that run potentially vulnerable software has skyrocketed,
and vulnerabilities are increasingly being discovered in the
software running these devices [29].

While many vulnerabilities are discovered by hand,
manual analysis is not a scalable method for vulnerability
assessment. To keep up with the amount of software that
must be vetted for vulnerabilities, an automated approach
is required. In fact, DARPA has recently lent its support
to this goal by sponsoring two efforts: VET, a program on
developing techniques for the analysis of binary Þrmware,
and the Cyber Grand Challenge (CGC), in which participants
design and deploy automated vulnerability scanning engines
that will compete against each other by exploiting binary
software. DARPA has funded both VET and the Cyber Grand
Challenge with millions of dollars in research funding and
prize money, demonstrating the strong interest in developing
a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing
automated vulnerability analysis systems. Many approaches
exist, falling into three main categories: static, dynamic, and
concolic analysis systems. These approaches have different
advantages and disadvantages. Static analysis systems can
provide provable guarantees Ð that is, a static analysis system
can show, with certainty, that a given piece of binary code
is secure. However, such systems have two fundamental
drawbacks: they are imprecise, resulting in a large amount
of false positives, and they cannot provide Òactionable inputÓ
(i.e., an example of a speciÞc input that can trigger a detected
vulnerability). Dynamic analysis systems, such as ÒfuzzersÓ,
monitor the native execution of an application to identify ßaws.
When ßaws are detected, these systems can provide actionable
inputs to trigger them. However, these systems suffer from
the need for Òinput test casesÓ to drive execution. Without
an exhaustive set of test cases, which requires considerable
manual effort to generate, the usability of such systems is
limited. Finally, concolic execution engines utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. However, because such
systems are able to trigger a large number of paths in the binary
(i.e., for a conditional branch, they often create an input that

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the Þrst page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the Þrst-named
author (for reproduction of an entire paper only), and the authorÕs employer
if the paper was prepared within the scope of employment.
NDSS Õ16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23368

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler!

Stanford University

Abstract

We present a new symbolic execution tool,KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We appliedKLEE

to all 90 programs in the GNU COREUTILS utility suite,
which form the core user-level environment installed on
almost all Unix systems and, as such, represent some
of the most heavily used and tested open-source pro-
grams in existence. For 84% of these utilities,KLEEÕs
automatically generated tests covered 80Ð100% of exe-
cutable statements and, in aggregate, signiÞcantly beat
the coverage of the developersÕ own hand-written test
suites. KLEE also found nine serious bugs (including
three that had been missed for over 15 years!) and pro-
duced concrete inputs that triggered the errors when run
on the uninstrumented code. When applied to MINIX Õs
versions of a small selection of the same applications,
KLEE achieved similar coverage (along with two bugs).
In addition, we also usedKLEE to automatically Þnd nu-
merous incorrect differences between several MINIX and
COREUTILS tools. Finally, we checked the kernel of the
HISTAR operating system, generating tests that achieved
76.4% (without paging enabled) and 67.1% coverage
(with paging) and found one important security bug.

1 Introduction

The importance of testing and the poor performance of
random and manual approaches has led to much recent
work in usingsymbolic executionto automatically gener-
ate high-coverage test inputs [9, 19, 10, 28, 18, 20, 6, 15,
14, 8, 16]. At a high-level, these tools use variations on
the following idea: Instead of running code on manually
or randomly constructed input, they run it on symbolic
input initially allowed to be Òanything.Ó They substitute

! Author names are in alphabetical order. Daniel Dunbar is themain
author of theKLEE system.

program inputs with symbolic values and replace cor-
responding concrete program operations with ones that
manipulate symbolic values. When program execution
branches based on a symbolic value, the system (con-
ceptually) follows both branches at once, maintaining on
each path a set of constraints called thepath condition
which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by
solving the current path condition to Þnd concrete val-
ues. Assuming deterministic code, feeding this concrete
input to an raw version of the checked code will cause it
to follow the same path and hit the same bug.

Results from these tools and others are promising.
However, while researchers have shown such tools can
get high coverage and Þnd bugs on a small number of
programs, it has been an open question, especially to
outsiders, whether the approach has any hope of consis-
tently achieving these goals on real applications. Two
common concerns are the exponential number of paths
through code and the difÞculty of handling the environ-
ment (Òthe environment problemÓ). Neither concern has
been much helped by the fact that most past work, includ-
ing ours, has usually reported results on a limited set of
hand-picked benchmarks and typically has not included
any coverage numbers.

This paper makes two contributions: First, we present
a new symbolic execution tool,KLEE, which we de-
signed from scratch to be robust and to deeply check a
broad range of applications. We leveraged several years
of lessons from our previous tool, EXE [10].KLEE uses
novel constraint solving optimizations that improve per-
formance by over an order of magnitude and let it han-
dle many programs that are completely intractable other-
wise. Its space-efÞcient representation of a checked path
means it can have tens to hundreds of thousands of such
paths active simultaneously. Its search heuristics effec-
tively select from these large sets of paths to get high
code coverage. Its simple, straightforward approach to
handling the environment let it check a broad range of

1

KLEE (2005)

Driller (2015)
Fuzzing (1989)

LAVA: Large-Scale Automated Vulnerability Addition

Vulnerability Discovery

¥ Finding vulnerabilities in software automatically has
been a major research and industry goal for the
last 25 years

3

CommercialAcademic

An Empirical Study of the Reliability

of

UNIX Utilities

BartonP. Miller
bart@cs.wisc.edu

LarsFredriksen
L.Fredriksen@att.com

BryanSo
so@cs.wisc.edu

Summary

Operatingsystemfacilities, suchasthe kernelandutility programs,are typically assumedto be reliable. In

our recentexperiments,we havebeenableto crash25-33%of theutility programsonanyversionof UNIX thatwas

tested.This reportdescribesthesetestsandananalysisof theprogrambugsthatcausedthecrashes.

Content Indicators

D.2.5(TestingandDebugging),D.4.9(ProgramsandUtilities), Generalterm:reliability, UNIX.

Researchsupportedin part by National ScienceFoundationgrantsCCR-8703373and CCR-8815928,OfÞceof Naval Researchgrant
N00014-89-J-1222,andaDigital EquipmentCorporationExternalResearchGrant.

Copyright! 1989Miller, Fredriksen,andSo.

Driller: Augmenting
Fuzzing Through Selective Symbolic Execution

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna

UC Santa Barbara
{ stephens,jmg,salls,dutcher,Þsh,jacopo,yans,chris,vigna} @cs.ucsb.edu

AbstractÑMemory corruption vulnerabilities are an ever-
present risk in software, which attackers can exploit to obtain
unauthorized access to conÞdential information. As products
with access to sensitive data are becoming more prevalent, the
number of potentially exploitable systems is also increasing,
resulting in a greater need for automated software vetting tools.
DARPA recently funded a competition, with millions of dollars
in prize money, to further research focusing on automated
vulnerability Þnding and patching, showing the importance of
research in this area. Current techniques for Þnding potential
bugs include static, dynamic, and concolic analysis systems,
which each having their own advantages and disadvantages. A
common limitation of systems designed to create inputs which
trigger vulnerabilities is that they only Þnd shallow bugs and
struggle to exercise deeper paths in executables.

We present Driller, a hybrid vulnerability excavation tool
which leverages fuzzing and selective concolic execution in
a complementary manner, to Þnd deeper bugs. Inexpensive
fuzzing is used to exercisecompartments of an application, while
concolic execution is used to generate inputs which satisfy the
complex checks separating the compartments. By combining the
strengths of the two techniques, we mitigate their weaknesses,
avoiding the path explosion inherent in concolic analysis and the
incompleteness of fuzzing. Driller uses selective concolic execution
to explore only the paths deemed interesting by the fuzzer and to
generate inputs for conditions that the fuzzer cannot satisfy. We
evaluate Driller on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge and show its
efÞcacy by identifying the same number of vulnerabilities, in
the same time, as the top-scoring team of the qualifying event.

I. I NTRODUCTION

Despite efforts to increase the resilience of software
against security ßaws, vulnerabilities in software are still
commonplace. In fact, in recent years, the occurrence of
security vulnerabilities has increased to an all-time high [28].
Furthermore, despite the introduction of memory corruption
and execution redirection mitigation techniques, such software
ßaws account for over a third of all vulnerabilities discovered
in the last year [14].

Whereas such vulnerabilities used to be exploited by
independent hackers who wanted to push the limits of
security and expose ineffective protections, the modern world
has moved to nation states and cybercriminals using such
vulnerabilities for strategic advantage or proÞt. Furthermore,
with the rise of theInternet of Things, the number of devices
that run potentially vulnerable software has skyrocketed,
and vulnerabilities are increasingly being discovered in the
software running these devices [29].

While many vulnerabilities are discovered by hand,
manual analysis is not a scalable method for vulnerability
assessment. To keep up with the amount of software that
must be vetted for vulnerabilities, an automated approach
is required. In fact, DARPA has recently lent its support
to this goal by sponsoring two efforts: VET, a program on
developing techniques for the analysis of binary Þrmware,
and the Cyber Grand Challenge (CGC), in which participants
design and deploy automated vulnerability scanning engines
that will compete against each other by exploiting binary
software. DARPA has funded both VET and the Cyber Grand
Challenge with millions of dollars in research funding and
prize money, demonstrating the strong interest in developing
a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing
automated vulnerability analysis systems. Many approaches
exist, falling into three main categories: static, dynamic, and
concolic analysis systems. These approaches have different
advantages and disadvantages. Static analysis systems can
provide provable guarantees Ð that is, a static analysis system
can show, with certainty, that a given piece of binary code
is secure. However, such systems have two fundamental
drawbacks: they are imprecise, resulting in a large amount
of false positives, and they cannot provide Òactionable inputÓ
(i.e., an example of a speciÞc input that can trigger a detected
vulnerability). Dynamic analysis systems, such as ÒfuzzersÓ,
monitor the native execution of an application to identify ßaws.
When ßaws are detected, these systems can provide actionable
inputs to trigger them. However, these systems suffer from
the need for Òinput test casesÓ to drive execution. Without
an exhaustive set of test cases, which requires considerable
manual effort to generate, the usability of such systems is
limited. Finally, concolic execution engines utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. However, because such
systems are able to trigger a large number of paths in the binary
(i.e., for a conditional branch, they often create an input that

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the Þrst page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the Þrst-named
author (for reproduction of an entire paper only), and the authorÕs employer
if the paper was prepared within the scope of employment.
NDSS Õ16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23368

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler!

Stanford University

Abstract

We present a new symbolic execution tool,KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We appliedKLEE

to all 90 programs in the GNU COREUTILS utility suite,
which form the core user-level environment installed on
almost all Unix systems and, as such, represent some
of the most heavily used and tested open-source pro-
grams in existence. For 84% of these utilities,KLEEÕs
automatically generated tests covered 80Ð100% of exe-
cutable statements and, in aggregate, signiÞcantly beat
the coverage of the developersÕ own hand-written test
suites. KLEE also found nine serious bugs (including
three that had been missed for over 15 years!) and pro-
duced concrete inputs that triggered the errors when run
on the uninstrumented code. When applied to MINIX Õs
versions of a small selection of the same applications,
KLEE achieved similar coverage (along with two bugs).
In addition, we also usedKLEE to automatically Þnd nu-
merous incorrect differences between several MINIX and
COREUTILS tools. Finally, we checked the kernel of the
HISTAR operating system, generating tests that achieved
76.4% (without paging enabled) and 67.1% coverage
(with paging) and found one important security bug.

1 Introduction

The importance of testing and the poor performance of
random and manual approaches has led to much recent
work in usingsymbolic executionto automatically gener-
ate high-coverage test inputs [9, 19, 10, 28, 18, 20, 6, 15,
14, 8, 16]. At a high-level, these tools use variations on
the following idea: Instead of running code on manually
or randomly constructed input, they run it on symbolic
input initially allowed to be Òanything.Ó They substitute

! Author names are in alphabetical order. Daniel Dunbar is themain
author of theKLEE system.

program inputs with symbolic values and replace cor-
responding concrete program operations with ones that
manipulate symbolic values. When program execution
branches based on a symbolic value, the system (con-
ceptually) follows both branches at once, maintaining on
each path a set of constraints called thepath condition
which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by
solving the current path condition to Þnd concrete val-
ues. Assuming deterministic code, feeding this concrete
input to an raw version of the checked code will cause it
to follow the same path and hit the same bug.

Results from these tools and others are promising.
However, while researchers have shown such tools can
get high coverage and Þnd bugs on a small number of
programs, it has been an open question, especially to
outsiders, whether the approach has any hope of consis-
tently achieving these goals on real applications. Two
common concerns are the exponential number of paths
through code and the difÞculty of handling the environ-
ment (Òthe environment problemÓ). Neither concern has
been much helped by the fact that most past work, includ-
ing ours, has usually reported results on a limited set of
hand-picked benchmarks and typically has not included
any coverage numbers.

This paper makes two contributions: First, we present
a new symbolic execution tool,KLEE, which we de-
signed from scratch to be robust and to deeply check a
broad range of applications. We leveraged several years
of lessons from our previous tool, EXE [10].KLEE uses
novel constraint solving optimizations that improve per-
formance by over an order of magnitude and let it han-
dle many programs that are completely intractable other-
wise. Its space-efÞcient representation of a checked path
means it can have tens to hundreds of thousands of such
paths active simultaneously. Its search heuristics effec-
tively select from these large sets of paths to get high
code coverage. Its simple, straightforward approach to
handling the environment let it check a broad range of

1

KLEE (2005)

Driller (2015)
Fuzzing (1989)

Does this work??

LAVA: Large-Scale Automated Vulnerability Addition

Debugging the Bug Finders

¥ Lots of work that claims to Þnd bugs in programs

¥ Lack of ground truth makes it very difÞcult to
evaluate these claims

¥ If Coverity Þnds 22 bugs in my program, is that
good or bad?

¥ What are the false positive and false negative
rates?

4

LAVA: Large-Scale Automated Vulnerability Addition

Existing Test Corpora

Some existing bug
corpora exist, but have
many problems:

¥ Synthetic (small)
programs

¥ Don't always have
triggering inputs

¥ Fixed size Ð tools can
ÒoverÞtÓ to the corpus

5

LAVA: Large-Scale Automated Vulnerability Addition

What About Real Vulnerabilities?

¥ Real vulnerabilities with proof-of-concept exploits
are essentially what we want

¥ But there just aren't that many of them. And Þnding
new ones is expensive!

6

Forbes, 2012

LAVA: Large-Scale Automated Vulnerability Addition

Debugging the Bug Finders

¥ Existing corpora are Þxed size and static Ð!it's easy
to optimize to the benchmark

¥ Instead we would like to automatically create bug
corpora

¥ Take an existing program and automatically add
new bugs into it

¥ Now we can measure how many of our bugs they
Þnd to estimate effectiveness of bug-Þnders

7

LAVA: Large-Scale Automated Vulnerability Addition

Goals

¥ We want to produce bugs that are:

¥ Plentiful (can put 1000s into a program easily)

¥ Distributed throughout the program

¥ Come with a triggering input

¥ Only manifest for a tiny fraction of inputs

¥ Are likely to be security-critical

8

LAVA: Large-Scale Automated Vulnerability Addition

Sounds Simple... But Not

¥ Why not just change all the strncpys to
strcpys ?

¥ Turns out this breaks most programs for every
input Ð!trivial to Þnd the bugs

¥ We won't know how to trigger the bugs Ð!hard to
prove they're "real" and security-relevant

¥ This applies to most local , random mutations

9

LAVA: Large-Scale Automated Vulnerability Addition

Our Approach: DUAs

¥ We want to Þnd parts of the program's input data that are:

¥ Dead: not currently used much in the program (i.e., we can set
to arbitrary values)

¥ Uncomplicated: not altered very much (i.e., we can predict their
value throughout the program's lifetime)

¥ Available in some program variables

¥ These properties try to capture the notion of attacker-controlled
data

¥ If we can Þnd these DUAs, we will be able to add code to the
program that uses such data to trigger a bug

10

LAVA: Large-Scale Automated Vulnerability Addition

New Taint-Based Measures

¥ How do we Þnd out what data is dead and
uncomplicated ?

¥ Two new taint-based measures:

¥ Liveness: a count of how many times some input
byte is used to decide a branch

¥ Taint compute number: a measure of how much
computation been done on some data

11

LAVA: Large-Scale Automated Vulnerability Addition

Dynamic Taint Analysis

¥ We use dynamic taint analysis to
understand the effect of input data
on the program

¥ Our taint analysis requires some
speciÞc features:

¥ Large number of labels available

¥ Taint tracks label sets

¥ Whole-system & fast (enough)

¥ Our open-source dynamic analysis
platform, PANDA, provides all of
these features

12

c = a + b ; a: {w,x} ; b: {y,z}
c ! {w,x,y,z}

https://github.com/moyix/panda

https://github.com/moyix/panda

LAVA: Large-Scale Automated Vulnerability Addition

Taint Compute Number (TCN)
13

// a,b,n are inputs
1:
2:
3:
4:
5:

TCN measures how much computation has been
done on a variable at a given point in the program

LAVA: Large-Scale Automated Vulnerability Addition

Liveness
14

// a,b,n are inputs
!"
#"
$"
%"
&"

Bytes Liveness

{0..3} 0

{4..7} n
{8..11} 1

b: bytes {0..3}
n: bytes {4..7}
a: bytes {8..11}

Liveness measures how many
branches use each input byte

LAVA: Large-Scale Automated Vulnerability Addition

Attack Point (ATP)

¥ An Attack Point (ATP) is any place where we may
want to use attacker-controlled data to cause a bug

¥ Examples: pointer dereference, data copying,
memory allocation, ...

¥ In current LAVA implementation we just modify
pointer dereferences to cause buffer overßow

15

LAVA: Large-Scale Automated Vulnerability Addition

Approach: Overview
16

!"#$%&''&()*+ ,
(-#'+-..*$%$ &'&

&#$%&''&()%/-"#'0
1#2*('&3.*%

3450

1#2*('%345%"#'-%
/+-5+&6%0-4+(*7
(-6/".*%&#$ ' *0'%

8"'9%6-$":"*$%"#/4'

;.

;.
<::*('0

1#0'+46*#'%0-4+(*%
8"'9%' &"#'%=4*+"*0

>4#%"#0'+46*#'*$%
/ +-5+&6%-#%"#/4'0

?@AB@%+*/.&C%
D%'&"#'%&#&.C0"0%

?@AB@%+*(-+$%

1#/4'%(-+/40

LAVA: Large-Scale Automated Vulnerability Addition

LAVA Bugs

¥ Any (DUA, ATP) pair where the DUA occurs before
the attack point is a potential bug we can inject

¥ By modifying the source to add new data ßow the
from DUA to the attack point we can create a bug

17

DUA + ATP =

LAVA: Large-Scale Automated Vulnerability Addition

LAVA Bug Example

¥ PANDA taint analysis shows that bytes 0-3 of buf on
line 115 of src/encoding.c is attacker-controlled
(dead & uncomplicated)

¥ From PANDA we also see that in readcdf.c line 365
there is a read from a pointer Ð if we modify the pointer
value we will likely cause a bug in the program

18

encoding.c 115: } else if (looks_extended(buf, nbytes,
*ubuf, ulen)) {

!""#$%&'($)*"')++&,(,#"#

readcdf.c 365: if (cdf_read_header(&info, &h) == -1)

-)''./"01+&(
/)0*"&'

2&3(,#"#(4+)3

LAVA: Large-Scale Automated Vulnerability Addition

LAVA Bug Example

¥ PANDA taint analysis shows that bytes 0-3 of buf on
line 115 of src/encoding.c is attacker-controlled
(dead & uncomplicated)

¥ From PANDA we also see that in readcdf.c line 365
there is a read from a pointer Ð if we modify the pointer
value we will likely cause a bug in the program

19

encoding.c 115 : } else if (looks_extended (buf , nbytes ,
* ubuf , ulen)) {

r eadcdf.c 365: if (cdf_read_header (&info, &h) == - 1)

!"##$%&'()*+
%"',&*#

-*.+/0&0+1)".

2&&034*#+3",&#"))*/+/0&0

LAVA: Large-Scale Automated Vulnerability Addition

LAVA Bug Example
20

// encoding.c :
} else if

(({ int rv =
looks_extended (buf , nbytes , * ubuf , ulen);

if (buf) {
int lava = 0;
lava |= ((unsigned char *) buf)[0];
lava |= ((unsigned char *) buf)[1] << 8;
lava |= ((unsigned char *) buf)[2] << 16;
lava |= ((unsigned char *) buf)[3] << 24;
lava_set (lava);

}; rv ; })) {

// readcdf.c :
if (cdf_read_header

((&info) + (lava_get ()) *
(0x6c617661 == (lava_get ()) || 0x6176616c == (lava_get ())),

&h) == - 1)

When the input Þle data that ends up in buf is set
to 0x6c6176c1, we will add 0x6c6176c1 to the
pointer info, causing an out of bounds access

LAVA: Large-Scale Automated Vulnerability Addition

Evaluation: How Many Bugs?

¥ We ran four open-source programs each on a
single input and generated candidate bugs

¥ Because validating all possible bugs would take
too long, we instead validated a random sample of
2000 per program

¥ Result : extrapolating from the yield numbers, a
single run gives us up to ~200,000 real bugs

21

TABLE I: LAVA Injection results for open source programs of various sizes

Num Lines Potential Validated Inj Time
Name Version Src Files C code N(DUA) N(ATP) Bugs Bugs Yield (sec)
Þle 5.22 19 10809 631 114 17518 774 38.7% 16

readelf 2.25 12 21052 3849 266 276367 1064 53.2 % 354
bash 4.3 143 98871 3832 604 447645 192 9.6% 153

tshark 1.8.2 1272 2186252 9853 1037 1240777 354 17.7% 542

Fig. 9: A cartoon representing an entire program trace, anno-
tated with instruction count at which DUA is siphoned off to
be used,I (DUA), attack point where it is used,I (AT P), and
total number of instructions in trace,I (T OT).

B. Bug Distribution

It would appear that LAVA can inject a very large number
of bugs into a program. If we extrapolate from yield numbers
in Table I, we estimate there would be almost 400,000 real
bugs if all were tested. But how well distributed is this set of
bugs?

For programs likefile and bash , between 11 and 44
source Þles are involved in a potential bug. In this case, the
bugs appear to be fairly well distributed, as those numbers
represent 58% and 31% of the total for each, respectively. On
the other hand,readelf andtshark fare worse, with only
2 and 122 source Þles found to involve a potential bug for
each (16.7% and 9.6% of source Þles).

The underlying cause for the low numbers of Þles in which
bugs appear seems to be poor dynamic coverage. Fortshark ,
much of the code is devoted to parsing esoteric network
protocols, and we used only a single input Þle. Similarly, we
only used a single hand-written script withbash , and made
little attempt to cover a majority of language features. Finally,
we ranreadelf with a single command line ßag (-a); this
means that functionality such as DWARF symbol parsing was
not exercised.

C. Bug Realism

The intended use of the bugs created by this system is as
ground truth for development and evaluation of vulnerability
discovery tools and techniques. Thus, it is crucial that they be
realistic in some sense. Realism is, however, difÞcult to assess.

Because this work is, to our knowledge, the Þrst to consider
the problem of fully automated bug injection, we are not able
to make use of any standard measures for bug realism. Instead,
we devised our own measures, focusing on features such as
how well distributed the malformed data input and trigger
points were in the programÕs execution, as well as how much
of the original behavior of the program was preserved.

We examined three aspects of our injected bugs as measures
of realism. The Þrst two are DUA and attack point position
within the program trace, which are depicted in Figure 9. That
is, we determined the fraction of trace instructions executed at

Histogram of rdfs$V1

I(DUA)

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
20

00
00

60
00

00
10

00
00

0

Fig. 10: Normalized DUA trace location

the point the DUA is siphoned off and at the point it is used to
attack the program by corrupting an internal program value.

Histograms for these two quantities,I (DUA) andI (AT P),
are provided in Figures 10 and 11, where counts are for all
potential bugs in the LAVA database for all Þve open source
programs. DUAs and attack points are clearly available at all
points during the trace, although there appear to be more at
the beginning and end. This is important, since bugs created
using these DUAs have entirely realistic control and data-ßow
all the way up toI (DUA). Therefore, vulnerability discovery
tools will have to reason correctly about all of the program up
to I (DUA) in order to correctly diagnose the bug.

Our third metric concerns the portion of the tracebetween
the I (DUA) and I (AT P). This segment is of particular
interest since LAVA currently makes data ßow between DUA
and attack point via a pair of function calls. Thus, it might be
argued that this is an unrealistic portion of the trace in terms
of data ßow. The quantityI (DUA)/I (AT P) will be close
to 1 for injected bugs that minimize this source of unrealism.
This would correspond to the worked example in Figure 1;
the DUA is still in scope when, a few lines later in the same
function, it can be used to corrupt a pointer. No abnormal
data ßow is required. The histogram in Figure 12 quantiÞes
this effect for all potential LAVA bugs, and it is clear that a
large fraction haveI (DUA)/I (AT P) ! 1, and are therefore
highly realistic by this metric.

D. Vulnerability Discovery Tool Evaluation

We ran two vulnerability discovery tools on LAVA-injected
bugs to investigate their use in evaluation.

1) Coverage guided fuzzer (referred to as FUZZER)
2) Symbolic execution + SAT solving (referred to as SES)
These two, speciÞcally, were chosen because fuzzing and

symbolic execution are extremely popular techniques for Þnd-

LAVA: Large-Scale Automated Vulnerability Addition

Evaluation: What Inßuences Yield?

¥ TCN strongly affects yield

¥ No bugs that involved TCN greater than 10 were
useable

¥ Liveness has a weaker correlation with yield Ð!even
fairly live data can be sometimes be used if TCN is
low

22

bug into the programfile can be seen in Figures 7, and 8.
The original input tofile was the binary/bin/ls , and the
required modiÞcation to that Þle is to simply set its Þrst four
bytes to the string ÔlavaÕ to trigger the bug. Note that the taint
analysis and FIB identiÞes a DUA in one compilation unit and
an attack point in another compilation unit.

VI. RESULTS

We evaluated LAVA in three ways. First, we injected large
numbers of bugs into four open source programs: Þle, readelf
(from binutils), bash, and tshark (the command-line version
of the packet capture and analysis tool Wireshark). For each
of these, we report various statistics with respect to both the
target program and also LAVAÕs success at injecting bugs.
Second, we evaluated the distribution and realism of LAVAÕs
bugs by proposing and computing various measures. Finally,
we performed a preliminary investigation to see how effective
existing bug-Þnding tools are at Þnding LAVAÕs bugs, by
measuring the detection rates of an open-source fuzzer and
a symbolic execution-based bug Þnder.

Counting Bugs

Before we delve into the results, we must specify what it
is we mean by an injected bug, and what makes two injected
bugs distinct. Although there are many possible ways to deÞne
a bug, we choose a deÞnition that best Þts our target use case:
two bugs should be considered different if an automated tool
would have to reason about them differently. For our purposes,
we deÞne a bug as a unique pair(DUA, attackpoint). Ex-
panding this out, that means that the source Þle, line number,
and variable name of the DUA, and the source Þle and line
number of the attack point must be unique.

Some might object that this artiÞcially inßates the count of
bugs injected into the program, for example because it would
consider two bugs distinct if they differ in where the Þle input
becomes available to the program, even though the same Þle
input bytes are used in both cases. But in fact these should be
counted as different bugs: the data and control ßow leading up
to the point where the DUA occurs will be very different, and
vulnerability discovery tools will have to reason differently
about the two cases.

A. Injection Experiments

The results of injecting bugs into open source programs are
summarized in Table I. In this table, programs are ordered
by size, in lines of C code, as measured by David WheelerÕs
sloccount . A single input was used with each program to
measure taint and Þnd injectable bugs. The input tofile
and readelf was the programls . The input totshark
was a 16K packet capture Þle from a site hosting a number
of such examples. The input tobash was a 124-line shell
script written by the authors.N (DUA) and N (AT P) are
the number of DUAs and attack points collected by theFIB
analysis. Note that, in order for a DUA or attack point to be
counted, it must have been deemed viable for some bug, as
described in Section V-C. The columnsPotential Bugsand

Validated Bugsin Table I give the numbers of both potential
bugs found byFIB , but also those veriÞed to actually return
exitcodes indicating a buffer overßow (-11 for segfault or -6
for heap corruption) when run against the modiÞed input. The
penultimate column in the table isYield, which is the fraction
of potential bugs what were tested and determined to be actual
buffer overßows. The last column gives the time required to
test a single potential bug injection for the target.

Exhaustive testing was not possible for a number of reasons.
Larger targets had larger numbers of potential bugs and take
longer to test; for example,tshark has over a million
potential bugs and each takes almost 10 minutes to test. This
is because testing requires not only injecting a small amount
of code to add the bug, but also recompiling and running the
resulting program. For many targets, we found the build to be
subtly broken so that amake clean was necessary to pick
up the bug injection reliably, which further increased testing
time. Instead, we attempted to validate 2000 potential bugs
chosen uniformly at random for each target. Thus, when we
report in Table I that fortshark the yield is 17.7%, this is
because 306 out of 2000 bugs were found to be valid.

As the injected bug is designed to be triggered only if a
particular set of four bytes in the input is set to a magic
value, we tested with both the original input and with the
modiÞed one that contained the trigger. We did not encounter
any situation in which the original input triggered a crash.

Yield varies considerably from less than 10% to over 50%.
To understand this better, we investigated the relationship be-
tween our two taint-based measures and yield. For each DUA
used to inject a bug, we determinedmT CN , the maximum
TCN for any of its bytes andmLIV , the maximum liveness
for any label in any taint label set associated with one of its
bytes. More informally,mT CN represents how complicated a
function of the input bytes a DUA is, andmLIV is a measure
of how much the control ßow of a program is inßuenced by
the input bytes that determine a DUA.

Table II shows a two-dimensional histogram with bins
for mT CN intervals along the vertical axis and bins for
mLIV along the horizontal axis. The top-left cell of this
table represents all bug injections for whichmT CN < 10
and mLIV < 10, and the bottom-right cell is all those for
which mT CN > = 1000 and mLIV > = 1000. Recall that
when mT CN = mLIV = 0 , the DUA is not only a direct
copy of input bytes, but those input bytes have also not been
observed to be used in deciding any program branches. As
eithermT CN or mLIV increase, yield deteriorates. However,
we were surprised to observe thatmLIV values of over 1000
still gave yield in the 10% range.

TABLE II: Yield as a function of bothmLIV andmT CN

mLIV
mT CN [0, 10) [10, 100) [100, 1000) [1000, + inf]
[0, 10) 51.9% 22.9% 17.4% 11.9%
[10, 100) Ð 0 0 0
[100, + inf] Ð Ð Ð 0

LAVA: Large-Scale Automated Vulnerability Addition

Evaluation: Can Tools Find Them?

¥ We took two open-source bug-Þnding tools and
tried to measure their success at Þnding LAVA
bugs

¥ A coverage-guided fuzzer (FUZZER)

¥ A symbolic execution and constraint solving tool
(SES)

¥ (Actual names withheld since this is just a
preliminary study)

23

LAVA: Large-Scale Automated Vulnerability Addition

Results: SpeciÞc Value
24

a large range than a small range; rather, the number of bugs
found is limited by how deep into the program the symbolic
execution reaches.

Note that having each bug in a separate copy of the program
means that for each run of a bug Þnding tool, only one bug is
available for discovery at a time. This is one kind of evaluation,
but it seems to disadvantage tools like FUZZER and SES,
which appear to be designed to work for a long time on a
single program that may contain multiple bugs.

Thus, we created a second corpus,LAVA-M, in which we
injected more than one bug at a time into the source code. We
chose four programs from thecoreutils suite that took
Þle input: base64 , md5sum, uniq , and who. Into each,
we injected as many veriÞed bugs as possible. Because the
coreutils programs are quite small, and because we only
used a single input Þle for each to perform the taint analysis,
the total number of bugs injected into each program was
generally quite small. The one exception to this pattern was
the who program, which parses a binary Þle with many dead
or even unused Þelds, and therefore had many DUAs available
for bug injection.

We were not able to inject multiple bugs of the two types
described above (knob-and-trigger and range) as interactions
between bugs became a problem, and so all bugs were of
the type in Figure 8, which trigger for only a single setting
of four input bytes. TheLAVA-M corpus, therefore, is four
copies of the source code forcoreutils version 8.24. One
copy has 44 bugs injected intobase64 , and comes with 44
inputs known to trigger those bugs individually. Another copy
has 57 bugs inmd5sum, and a third has 28 bugs inuniq .
Finally, there is a copy with 2136 bugs existing all at once
and individually expressible inwho.

TABLE IV: Bugs found inLAVA-M corpus

Program Total Bugs Unique Bugs Found
FUZZER SES Combined

uniq 28 7 0 7
base64 44 7 9 14
md5sum 57 2 0 2
who 2136 0 18 18
Total 2265 16 27 41

We ran FUZZER and SES against each program inLAVA-
M, with 5 hours of runtime for each program.md5sum ran
with the -c argument, to check digests in a Þle.base64 ran
with the -d argument, to decode base 64.

SES found no bugs inuniq or md5sum. In uniq , we
believe this is because the control ßow is too unconstrained. In
md5sum, SES failed to execute any code past the Þrst instance
of the hash function.base64 and who both turn out more
successful for SES. The tool Þnds 9 bugs inbase64 out
of 44 inserted; these include both deep and shallow bugs, as
base64 is such a simple program to analyze.

SESÕs results are a little more complicated forwho. All of
the bugs it Þnds forwho use one of two DUAs, and all of them
occur very early in the trace. One artifact of our method for
injecting multiple bugs simultaneously is that multiple bugs

share the same attack point. It is debatable how well this
represents real bugs. In practice, it means that SES can only
Þnd one bug per attack point, as Þnding an additional bug at
the same attack point does not necessarily require covering
new code. LAVA could certainly be changed to have each bug
involve new code coverage. SES could also be improved to
Þnd all the bugs at each attack point, which means generating
multiple satisfying inputs for the same set of conditions.

FUZZER found bugs in all utilities exceptwho.2 Unlike
SES, the bugs were fairly uniformly distributed throughout the
program, as they depend only on guessing the correct 4-byte
trigger at the right position in the input Þle.

FUZZERÕs failure to Þnd bugs inwho is surprising. We
speculate that the size of the seed Þle (the Þrst 768 bytes of
a utmp Þle) used for the fuzzer may have been too large
to effectively explore through random mutation, but more
investigation is necessary to pin down the true cause. Indeed,
tool anomalies of this sort are exactly the sort of thing one
would hope to Þnd with LAVA, as they represent areas where
tools might make easy gains.

We note that the bugs found by FUZZER and SES have very
little overlap (only 2 bugs were found by both tools). This is a
very promising result for LAVA, as it indicates that the kinds
of bugs created by LAVA are not tailored to a particular bug
Þnding strategy.

VII. R ELATED WORK

The design of LAVA is driven by the need for bug corpora
that are a) dynamic (can produce new bugs on demand), b)
realistic (the bugs occur in real programs and are triggered by
the programÕs normal input), and c) large (consist of hundreds
of thousands of bugs). In this section we survey existing bug
corpora and compare them to the bugs produced by LAVA.

The need for realistic corpora is well-recognized. Re-
searchers have proposed creating bug corpora from student
code [18], drawing from existing bug report databases [12],
[13], and creating a public bug registry [7]. Despite these pro-
posals, public bug corpora have remained static and relatively
small.

The earliest work on tool evaluation via bug corpora appears
to be by Wilander and Kamkar, who created a synthetic testbed
of 44 C function calls [22] and 20 different buffer overßow
attacks [23] to test the efÞcacy of static and dynamic bug
detection tools, respectively. These are synthetic test cases,
however, and may not reßect real-world bugs. In 2004, Zitser
et al. [27] evaluated static buffer overßow detectors; their
ground truth corpus was painstakingly assembled by hand
over the course of six months and consisted of 14 annotated
buffer overßows with triggering and non-triggering inputs as
well as buggy and patched versions of programs; these same
14 overßows were later used to evaluate dynamic overßow
detectors [25]. Although these are real bugs from actual
software, the corpus is small both in terms of the number of

2In fact, we allowed FUZZER to continue running after 5 hours had passed;
it managed to Þnd a bug inwho in the sixth hour.

Less than 2% of injected bugs found

LAVA: Large-Scale Automated Vulnerability Addition

Results: Range-Triggered Bugs
25

Histogram of rdfs$V2

I(ATP)

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0e
+

00
4e

+
05

8e
+

05

Fig. 11: Normalized ATP trace location
Histogram of rdfs$V3

I(DUA)/I(ATP)

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
50

00
00

10
00

00
0

15
00

00
0

Fig. 12: Fraction of trace with perfectly normal or realistic
data ßow,I (DUA)/I (AT P)

ing real-world bugs. FUZZER and SES are both state-of-the-
art, high-proÞle tools. For each tool, we expended signiÞcant
effort to ensure that we were using them correctly. This means
carefully reading all documentation, blog posts, and email lists.
Additionally, we constructed tiny example buggy programs
and used them to verify that we were able to use each tool at
least to Þnd known easy bugs.

Note that the names of tools under evaluation are being
withheld in reporting results. Careful evaluation is a large
and important job, and we would not want to give it short
shrift, either in terms of careful setup and use of tools, or
in presenting and discussing results. Our intent, here, is to
determine if LAVA bugscan be usedto evaluate bug Þnding
systems. It is our expectation that in future work either by
ourselves or others, full and careful evaluation of real, named
tools will be performed using LAVA. While that work is
outside the scope of this paper, we hope to indicate that it
should be both possible and valuable. Additionally, it is our
plan and hope that LAVA bugs will be made available in
quantity and at regular refresh intervals for self-evaluation and
hill climbing.

The Þrst corpus we created,LAVA-1, used thefile target,
the smallest of those programs into which we have injected
bugs. This corpus consists of sixty-nine buffer overßow bugs
injected into the source with LAVA, each on a different branch
in a git repository with a fuzzed version of the input veriÞed

to trigger a crash checked in along with the code. Two types
of buffer overßows were injected, each of which makes use
of a single 4-byte DUA to trigger and control the overßow.

1) Knob-and-trigger . In this type of bug, two bytes of the
DUA (the trigger) are used to test against a magic value
to determine if the overßow will happen. The other two
bytes of the DUA (theknob) determine how much to
overßow. Thus, these bugs manifest if a 2-byte unsigned
integer in the input is a particular value but only if
another 2-bytes in the input are big enough to cause
trouble.

2) Range. These bugs trigger if the magic value is simply
in some range, but also use the magic value to determine
how much to overßow. The magic value is a 4-byte
unsigned integer and the range varies.

These bug types were designed to mirror real bug patterns.
In knob-and-trigger bugs, two different parts of the input are
used in different ways to determine the manifestation of the
bug. In range bugs, rather than triggering on a single value
out of 232, the size of the haystack varies. Note that a range
of 20 is equivalent to the bug presented in Figure 8.

TABLE III: Percentage of bugs found inLAVA-1corpus

Tool Bug Type
Range

20 27 214 221 228 KT
FUZZER 0 0 9% 79% 75% 20%
SES 8% 0 9% 21% 0 10%

The results of this evaluation are summarized in Table III.
Ranges of Þve different sizes were employed:20 (12 bugs),
27 (10 bugs),214 (11 bugs),221 (14 bugs), and228 (12 bugs);
we used 10 knob-and-trigger bugs. We examined all output
from both tools. FUZZER ran for Þve hours on each bug and
found bugs in the larger ranges (214, 221, and228). It was also
able to uncover 20% of the knob-and-trigger bugs, perhaps
because the knob and trigger could be fuzzed independently.
SES ran for Þve hours on each bug, and found several bugs
in all categories except the27 and228 ranges.

The results for theLAVA-1 corpus seem to accord well
with how these tools work. FUZZER uses the program largely
as a black box, randomizing individual bytes, and guiding
exploration with coverage measurements. Bugs that trigger if
and only if a four-byte extent in the input is set to a magic
value are unlikely to be discovered in this way. Given time,
FUZZER Þnds bugs that trigger for large byte ranges. Note
that for many of these LAVA bugs, when the range is so large,
discovery is possible by simply fuzzing every byte in the input
a few times. These bugs may, in fact, be trivially discoverable
with a regression suite for a program likefile that accepts
arbitrary Þle input.1 By contrast, SES is able to Þnd both knob-
and-trigger bugs and different ranges, and the size of the range
does not affect the number of bugs found. This is because it is
no more difÞcult for a SAT solver to Þnd a satisfying input for

1In principle, anyway. In practicefile Õs test suite consists of just 3 tests,
none of which trigger our injected bugs.

LAVA: Large-Scale Automated Vulnerability Addition

Evaluation: Realism

¥ The burning question in everyone's mind now: are these bugs
realistic ?

¥ This is hard to measure, in part because realism is not a well-
deÞned property!

¥ Our evaluation looks at:

¥ How injected bugs are distributed in the program

¥ What proportion of the trace has normal data ßow

¥ Ultimately, the best test of realism will be whether it helps bug-
Þnding software get better

26

LAVA: Large-Scale Automated Vulnerability Addition

Results: Realism
27TABLE I: LAVA Injection results for open source programs of various sizes

Num Lines Potential Validated Inj Time
Name Version Src Files C code N(DUA) N(ATP) Bugs Bugs Yield (sec)
Þle 5.22 19 10809 631 114 17518 774 38.7% 16

readelf 2.25 12 21052 3849 266 276367 1064 53.2 % 354
bash 4.3 143 98871 3832 604 447645 192 9.6% 153

tshark 1.8.2 1272 2186252 9853 1037 1240777 354 17.7% 542

Fig. 9: A cartoon representing an entire program trace, anno-
tated with instruction count at which DUA is siphoned off to
be used,I (DUA), attack point where it is used,I (AT P), and
total number of instructions in trace,I (T OT).

B. Bug Distribution

It would appear that LAVA can inject a very large number
of bugs into a program. If we extrapolate from yield numbers
in Table I, we estimate there would be almost 400,000 real
bugs if all were tested. But how well distributed is this set of
bugs?

For programs likefile and bash, between 11 and 44
source Þles are involved in a potential bug. In this case, the
bugs appear to be fairly well distributed, as those numbers
represent 58% and 31% of the total for each, respectively. On
the other hand,readelf andtshark fare worse, with only
2 and 122 source Þles found to involve a potential bug for
each (16.7% and 9.6% of source Þles).

The underlying cause for the low numbers of Þles in which
bugs appear seems to be poor dynamic coverage. Fortshark,
much of the code is devoted to parsing esoteric network
protocols, and we used only a single input Þle. Similarly, we
only used a single hand-written script withbash, and made
little attempt to cover a majority of language features. Finally,
we ranreadelf with a single command line ßag (-a); this
means that functionality such as DWARF symbol parsing was
not exercised.

C. Bug Realism

The intended use of the bugs created by this system is as
ground truth for development and evaluation of vulnerability
discovery tools and techniques. Thus, it is crucial that they be
realistic in some sense. Realism is, however, difÞcult to assess.

Because this work is, to our knowledge, the Þrst to consider
the problem of fully automated bug injection, we are not able
to make use of any standard measures for bug realism. Instead,
we devised our own measures, focusing on features such as
how well distributed the malformed data input and trigger
points were in the programÕs execution, as well as how much
of the original behavior of the program was preserved.

We examined three aspects of our injected bugs as measures
of realism. The Þrst two are DUA and attack point position
within the program trace, which are depicted in Figure 9. That
is, we determined the fraction of trace instructions executed at

Histogram of rdfs$V1

I(DUA)

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
20

00
00

60
00

00
10

00
00

0

Fig. 10: Normalized DUA trace location

the point the DUA is siphoned off and at the point it is used to
attack the program by corrupting an internal program value.

Histograms for these two quantities,I (DUA) andI (AT P),
are provided in Figures 10 and 11, where counts are for all
potential bugs in the LAVA database for all Þve open source
programs. DUAs and attack points are clearly available at all
points during the trace, although there appear to be more at
the beginning and end. This is important, since bugs created
using these DUAs have entirely realistic control and data-ßow
all the way up toI (DUA). Therefore, vulnerability discovery
tools will have to reason correctly about all of the program up
to I (DUA) in order to correctly diagnose the bug.

Our third metric concerns the portion of the tracebetween
the I (DUA) and I (AT P). This segment is of particular
interest since LAVA currently makes data ßow between DUA
and attack point via a pair of function calls. Thus, it might be
argued that this is an unrealistic portion of the trace in terms
of data ßow. The quantityI (DUA)/I (AT P) will be close
to 1 for injected bugs that minimize this source of unrealism.
This would correspond to the worked example in Figure 1;
the DUA is still in scope when, a few lines later in the same
function, it can be used to corrupt a pointer. No abnormal
data ßow is required. The histogram in Figure 12 quantiÞes
this effect for all potential LAVA bugs, and it is clear that a
large fraction haveI (DUA)/I (AT P) ! 1, and are therefore
highly realistic by this metric.

D. Vulnerability Discovery Tool Evaluation

We ran two vulnerability discovery tools on LAVA-injected
bugs to investigate their use in evaluation.

1) Coverage guided fuzzer (referred to as FUZZER)
2) Symbolic execution + SAT solving (referred to as SES)
These two, speciÞcally, were chosen because fuzzing and

symbolic execution are extremely popular techniques for Þnd-

Histogram of rdfs$V2

I(ATP)

Fr
eq
ue
nc
y

0.2 0.4 0.6 0.8 1.0

0e
+

00
4e

+
05

8e
+

05

Fig. 11: Normalized ATP trace location
Histogram of rdfs$V3

I(DUA)/I(ATP)

Fr
eq
ue
nc
y

0.2 0.4 0.6 0.8 1.0

0
50

00
00

10
00
00
0

15
00

00
0

Fig. 12: Fraction of trace with perfectly normal or realistic
data flow, I (DUA)/I (AT P)

ing real-world bugs. FUZZER and SES are both state-of-the-
art, high-profile tools. For each tool, we expended significant
effort to ensure that we were using them correctly. This means
carefully reading all documentation, blog posts, and email lists.
Additionally, we constructed tiny example buggy programs
and used them to verify that we were able to use each tool at
least to find known easy bugs.

Note that the names of tools under evaluation are being
withheld in reporting results. Careful evaluation is a large
and important job, and we would not want to give it short
shrift, either in terms of careful setup and use of tools, or
in presenting and discussing results. Our intent, here, is to
determine if LAVA bugs can be usedto evaluate bug finding
systems. It is our expectation that in future work either by
ourselves or others, full and careful evaluation of real, named
tools will be performed using LAVA. While that work is
outside the scope of this paper, we hope to indicate that it
should be both possible and valuable. Additionally, it is our
plan and hope that LAVA bugs will be made available in
quantity and at regular refresh intervals for self-evaluation and
hill climbing.

The first corpus we created, LAVA-1, used the file target,
the smallest of those programs into which we have injected
bugs. This corpus consists of sixty-nine buffer overflow bugs
injected into the source with LAVA, each on a different branch
in a git repository with a fuzzed version of the input verified

to trigger a crash checked in along with the code. Two types
of buffer overflows were injected, each of which makes use
of a single 4-byte DUA to trigger and control the overflow.

1) Knob-and-trigger . In this type of bug, two bytes of the
DUA (the trigger) are used to test against a magic value
to determine if the overflow will happen. The other two
bytes of the DUA (the knob) determine how much to
overflow. Thus, these bugs manifest if a 2-byte unsigned
integer in the input is a particular value but only if
another 2-bytes in the input are big enough to cause
trouble.

2) Range. These bugs trigger if the magic value is simply
in some range, but also use the magic value to determine
how much to overflow. The magic value is a 4-byte
unsigned integer and the range varies.

These bug types were designed to mirror real bug patterns.
In knob-and-trigger bugs, two different parts of the input are
used in different ways to determine the manifestation of the
bug. In range bugs, rather than triggering on a single value
out of 232, the size of the haystack varies. Note that a range
of 20 is equivalent to the bug presented in Figure 8.

TABLE III: Percentage of bugs found in LAVA-1corpus

Tool Bug Type
Range

20 27 214 221 228 KT
FUZZER 0 0 9% 79% 75% 20%
SES 8% 0 9% 21% 0 10%

The results of this evaluation are summarized in Table III.
Ranges of five different sizes were employed: 20 (12 bugs),
27 (10 bugs), 214 (11 bugs), 221 (14 bugs), and 228 (12 bugs);
we used 10 knob-and-trigger bugs. We examined all output
from both tools. FUZZER ran for five hours on each bug and
found bugs in the larger ranges (214, 221, and 228). It was also
able to uncover 20% of the knob-and-trigger bugs, perhaps
because the knob and trigger could be fuzzed independently.
SES ran for five hours on each bug, and found several bugs
in all categories except the 27 and 228 ranges.

The results for the LAVA-1 corpus seem to accord well
with how these tools work. FUZZER uses the program largely
as a black box, randomizing individual bytes, and guiding
exploration with coverage measurements. Bugs that trigger if
and only if a four-byte extent in the input is set to a magic
value are unlikely to be discovered in this way. Given time,
FUZZER finds bugs that trigger for large byte ranges. Note
that for many of these LAVA bugs, when the range is so large,
discovery is possible by simply fuzzing every byte in the input
a few times. These bugs may, in fact, be trivially discoverable
with a regression suite for a program like file that accepts
arbitrary file input.1 By contrast, SES is able to find both knob-
and-trigger bugs and different ranges, and the size of the range
does not affect the number of bugs found. This is because it is
no more difficult for a SAT solver to find a satisfying input for

1In principle, anyway. In practice file ’s test suite consists of just 3 tests,
none of which trigger our injected bugs.

!"# #$%

&'()*+,-./+01)(

LAVA: Large-Scale Automated Vulnerability Addition

Limitations and Caveats

¥ General limitations:

¥ Some types of vulnerabilities probably can't be injected using
this method Ð e.g., weak crypto bugs

¥ More work is needed to see if these bugs can improve bug-
Þnding software

¥ Implementation limits:

¥ Currently only works on C/C++ programs in Linux

¥ Only injects buffer overßow bugs

¥ Works only on source code

28

LAVA: Large-Scale Automated Vulnerability Addition

Future Work

¥ Continuous on-line competition to encourage
self-evaluation

¥ Use in security competitions like Capture the
Flag to re-use and construct challenges on-
the-ßy

¥ Improve and assess realism of LAVA bugs

¥ More types of vulnerabilities (use after free,
command injection, ...)

¥ More interesting effects (prove exploitability!)

29

LAVA: Large-Scale Automated Vulnerability Addition

Conclusions

¥ Presented a new technique that is capable of
quickly injecting massive numbers of bugs

¥ Demonstrated that current tools are not very good
at Þnding these bugs

¥ If these bugs prove to be good stand-ins for real-
world vulnerabilities, we can get huge, on-demand
bug corpora

30

LAVA: Large-Scale Automated Vulnerability Addition

Questions?
31

?
?

?

?
?

?
?

?

