TANDON SCHOOL
OF ENGINEERING

NYU

0,

llOOlOOlOlOOLllOLolla

O00LOLO@LLLD
OLLOOLOOLOLOOLI®OLOLRO LOOLOlOOLl[olol[
Q
XY S
N
)700‘\«\“

LAVA: Gy
L arge-scale Automated

Vulnerability Addition

\ /‘ Y 4
W 5
T &5
[—\
Engin Kirda Patrick Hulin, Tim Leek,
Andrea Mambretti Fredrich Ulrich. R Whel
Wil Robertson Brendan Dolan-Gavitt redrich Leh, Hyah wwhetan
NYU Tandon MIT Lincoln Laboratory

Northeastern University

This Talk i

NYU

* In this talk, we explore how to automatically add
large numbers of bugs to programs

* Why would we want to do this”?
 Computer programs don't have enough bugs

 We want to put backdoors in other people's
programs

LAVA: Large-Scale Automated Vulnerability Addition

This Talk i

NYU

* In this talk, we explore how to automatically add
large numbers of bugs to programs

* Why would we want to do this”?
o Computerprograms-donthave-enroughbugs

 We want to put backdoors in other people's
programs

LAVA: Large-Scale Automated Vulnerability Addition

This Talk i

NYU

* In this talk, we explore how to automatically add
large numbers of bugs to programs

* Why would we want to do this”?

LAVA: Large-Scale Automated Vulnerability Addition

g Vulnerability Discovery

!
NYU

* Finding vulnerabillities in software automatically has
been a major research and industry goal for the
last 25 years

Academic Commercial

Tests for Complex Systems Programs

KLEE: Unassisted and Automatic Generation of High-Coverage /‘ k I o C WO r k S
a Rogue Wave Company - e C u r e

An Empirical Study of the Reliability
of
UNIX Utilities

®

Barton P. Miller D R I I FY

bartacs.wisc.edu

Lars Fredriksen
L.Fredriksen@att.com riller: u entin

Bryan So rou clective 0Ol1C EXecution

so@cs.wisc.edu

[]

{) coverity’

Fuzzing (1989)
Driller (2015)

LAVA: Large-Scale Automated Vulnerability Addition

g Vulnerability Discovery

!
NYU

* Finding vulnerabillities in software automatically has
been a major research and industry goal for the
last 25 years

Academic Commercial

Fuzzing (1989)

UC Santa Barbara
stephens,jmg,salls, dutcherfish,jacopo,yans,chris,vigna} @cs.ucsb.edu

LAVA: Large-Scale Automated Vulnerability Addition

4

(%/z Debugging the Bug Finders
NYU

* Lots of work that claims to find bugs in programs

* Lack of ground truth makes it very ditticult to
evaluate these claims

* |f Coverity finds 22 bugs in my program, is that
good or bad?

 What are the false positive and false negative
rates”?

LAVA: Large-Scale Automated Vulnerability Addition

Existing Test Corpora ’

o MW

_ Some existing bug
\’ Fn.amebvnn.& corpora exist, but have
many problems:

Natiohal |
(\ Vulnerability e Synthetic (small)
» ._/—J Riﬁil.‘:ﬁse programs

EKPI.“ITQ Don't always have
DATABASE triggering inputs

NIST e Fixed size — tools can

National Institute of

ool o “overfit” to the corpus

LAVA: Large-Scale Automated Vulnerability Addition

gz, What About Real Vulnerabilities? °

NYU

* Real vulnerabilities with proot-of-concept exploits
are essentially what we want

* But there just aren't that many of them. And finding
New ones Is expensive!

ADOBE READER $5,000-%$30,000
MAC OSX $20,000-%50,000
ANDROID $30,000-%$60,000
FLASH OR JAVA BROWSER PLUG-INS $40,000-%$100,000
MICROSOFT WORD $50,000-%100,000
WINDOWS $60,000-%$120,000
FIREFOX OR SAFARI $60,000-%$150,000
CHROME OR INTERNET EXPLORER $80,000-%200,000
10S $100,000-$250,000

Forbes, 2012

LAVA: Large-Scale Automated Vulnerability Addition

(%/z Debugging the Bug Finders
NYU

* Existing corpora are fixed size and static — it's easy
to optimize to the benchmark

* |Instead we would like to automatically create bug
corpora

* Jake an existing program and automatically add
new bugs into it

« Now we can measure how many of our bugs they
find to estimate effectiveness of bug-finders

LAVA: Large-Scale Automated Vulnerability Addition

8
Goals

NYU

 We want to produce bugs that are:

* Plentiful (can put 1000s into a program easily)
* Distributed throughout the program

 Come with a triggering input

* Only manifest for a tiny fraction of inputs

* Are likely to be security-critical

LAVA: Large-Scale Automated Vulnerability Addition

8 Sounds Simple... But Not

!
NYU

* Why not just change all the strncpys to
strcpys?

e furns out this breaks most programs for every
input — trivial to find the bugs

 We won't know how to trigger the bugs — hard to
porove they're "real’” and security-relevant

* This applies to most local, random mutations

LAVA: Large-Scale Automated Vulnerability Addition

& Our Approach: DUAS ®

!
NYU

 \We want to find parts of the program's input data that are:

 Dead: not currently used much in the program (i.e., we can set
to arbitrary values)

 Uncomplicated: not altered very much (i.e., we can predict their
value throughout the program's lifetime)

e Available in some program variables

* These properties try to capture the notion of attacker-controlled
data

|t we can find these DUAs, we will be able to add code to the
program that uses such data to trigger a bug

LAVA: Large-Scale Automated Vulnerability Addition

8 New Taint-Based Measures

!
NYU

e How do we find out what data is dead and
uncomplicated”

e [woO new taint-based measures:

* [iveness: a count of how many times some input
byte Is used to decide a branch

e Jaint compute number: a measure of how much
computation been done on some data

LAVA: Large-Scale Automated Vulnerability Addition

8 Dynamic Taint Analysis

!
NYU

.

 We use dynamic taint analysis to
understand the effect of input data
on the program

e Qur taint analysis requires some
specific features:

* Large number of labels available

e Taint tracks label sets
C:a+b'a'{vvx}'b'{y,z}
C « {W,X yz}

* Qur open-source dynamic analysis
platform, PANDA, provides all of 0 ®
these features
S.

htt ithub.com/moyix/panda

* Whole-system & fast (enough)

LAVA: Large-Scale Automated Vulnerability Addition

https://github.com/moyix/panda

(%// Taint Compute Number (TCN) "

NYU

// a,b,n are inputs

f:int o = aib)

2:1f (a !'= Oxdeadbeef)
3: return;

4: for (int i=0; i<n; i++)
5: ct=s[1];

n-1 -

TCN measures how much cofnputation has been
done on a variable at a given point in the program

LAVA: Large-Scale Automated Vulnerability Addition

: 14
L Iveness

!

NYU

// a,b,n are inputs
1:int c = a+b;
2:1f |(a '= Oxdeadbeef)

3: return;
4: for (int 1=0; i++)
5: ct+=s[i];
0: bytes {0..3} 0.3] n
N bytes {4..7} .
- bytes {8..11} \4..7] "
- YL : (8..11} 1

Liveness measures how many
branches use each input byte

LAVA: Large-Scale Automated Vulnerability Addition

Attack Point (ATP) °

NYU

 An Attack Point (ATP) is any place where we may
want to use attacker-controlled data to cause a bug

 Examples: pointer dereference, data copying,
memory allocation, ...

* |n current LAVA implementation we just modify
pointer dereferences to cause buffer overtlow

LAVA: Large-Scale Automated Vulnerability Addition

@ Approach: Overview ”

!
NYU

Instrument source
Clang with taint queries
Input corpus
\4
Run instrumented
PANDA record program on inputs
Find i K >
ind attacker-
PANDA replay controlled data | > Injectable
+ taint analysis and attack points bugs
~__ -

\
Inject bug into
Clang program source,
compile and test
with modified input

LAVA: Large-Scale Automated Vulnerability Addition

L AVA Bugs !

NYU

* Any (DUA, ATP) pair where the DUA occurs before
the attack point is a potential bug we can inject

* By modifying the source to add new data flow the
from DUA to the attack point we can create a bug

DUA + AIP =

LAVA: Large-Scale Automated Vulnerability Addition

18

| AVA Bug Example

NYU

 PANDA taint analysis shows that bytes 0-3 of buf on
ine 115 of src/encoding. c is attacker-controlled

(dead & uncomplicated)

* From PANDA we also see that in readcdf. c line 365
there is a read from a pointer — if we modify the pointer
value we will likely cause a bug in the program

Attacker controlled data

\

encoding.c 115: } else if (looks_ extended (buf, nbytes,

*ubuf, ulen)) {
Corruptible New data flow
pointer \

readcdf.c 365: if (cdf read header(&info, &h) == -1)

LAVA: Large-Scale Automated Vulnerability Addition

19

| AVA Bug Example

NYU

 PANDA taint analysis shows that bytes 0-3 of buf on
ine 115 of src/encoding. c is attacker-controlled

(dead & uncomplicated)

* From PANDA we also see that in readcdf. c line 365
there is a read from a pointer — if we modify the pointer
value we will likely cause a bug in the program

Attacker controlled data

\

encoding.c 115: } else if (looks_ extended (buf, nbytes,

*ubuf, ulen)) {
Corruptible New data flow

pointer

readcdf.c 365: if (cdf read header(&info, &h) == -1)

LAVA: Large-Scale Automated Vulnerability Addition

LAVA Bug Example 20
NYU [ai

(({int rv =
looks extended(buf, nbytes, *ubuf, ulen);

if (buf) {
int lava = 0;
lava |= ((unsigned char ¥*)buf) [0];
lava |= ((unsigned char ¥*)buf) [1] << 8;
lava |= ((unsigned char ¥*)buf) [2] << 16;
lava |= ((unsigned char *)buf) [3] << 24;

lava set(lava) ;

}; rv; 1)) {

// readcdf.c:
if (cdf read header
((&info) + (lava get()) *
(0x6c617661 == (lava get()) || O0x6l766l6c == (lava get())),
&h) == -1)

When the input file data that ends up in buf is set
to 0x6¢c6176¢1, we will add 0x6¢c6176¢1 to the
pointer info, causing an out of bounds access

LAVA: Large-Scale Automated Vulnerability Addition

8 Evaluation: How Many Bugs? *

!

Num Lines Potential | Validated Inj Time
N Y U Name Version | Src Files C code N(DUA) | N(ATP) Bugs Bugs Yield (sec)
file 522 19 10809 631 114 17518 774 38.7% 16
readelf 2.25 12 21052 3849 266 276367 1064 53.2 % 354
bash 4.3 143 08871 3832 604 447645 192 9.6% 153
tshark | 1.8.2 1272 | 2186252 | 9853 1037 354 542

* We ran four open-source programs each on a
single input and generated candidate bugs

 Because validating all possible bugs would take

too long, we instead validated a random sample of
2000 per program

* Result: extrapolating from the yield numbers, a
single run gives us up to ~200,000 real bugs

LAVA: Large-Scale Automated Vulnerability Addition

<§z, Evaluation: What Influences Yield? =

NYU mLIV
mTCN 0,10) | [10,100) | [100,1000) | [1000, + inf]
0, 10) 51.0% | 22.9% 17.4% 11.9%
10, 100) _ 0 0 0
100, +inf] | — _ _ 0

 [CN strongly affects yield

* No bugs that involved TCN greater than 10 were
useable

* Liveness has a weaker correlation with yield — even
fairly live data can be sometimes be used if TCN is
oW

LAVA: Large-Scale Automated Vulnerability Addition

(?/ Evaluation: Can Tools Find Them? =

NYU

* We took two open-source bug-finding tools and
tried to measure their success at finding LAVA

bugs
* A coverage-quided fuzzer (FUZZER)

* A symbolic execution and constraint solving tool
(SES)

* (Actual names withheld since this is just a
poreliminary study)

LAVA: Large-Scale Automated Vulnerability Addition

. 24
(?/ Results: Specific Value
NYU
Unique Bugs Found

Program | Total Bugs | 77601 SES | Combined
uniqg 23 7 0 7
baseb4 44 7 0 14
md5sum 57 2 0 2

who 2136 0 18 18

Total 2265 16 27 41

Less than 2% of injected bugs found

LAVA: Large-Scale Automated Vulnerability Addition

S

(%// Results: Range-Iriggered Bugs i

NYU
Tool Bug Type
Range
20 27 214 221 228 KT
FUZZER | O 0 9% 719% | 15% | 20%
SES 3% | 0O 9% 21% | O 10%

LAVA: Large-Scale Automated Vulnerability Addition

: : 26
@ Evaluation: Realism

!
NYU

* The burning question in everyone's mind now: are these bugs
realistic”

e This is hard to measure, in part because realism is not a well-
defined property!

e Our evaluation looks at:
 How Iinjected bugs are distributed in the program
 What proportion of the trace has normal data flow

o Ultimately, the best test of realism will be whether it helps bug-
finding software get better

LAVA: Large-Scale Automated Vulnerability Addition

: 27
Results: Realism

NYU

i _
S _ 0
=) F -
S 3
] >
T o 2 .
& S g
s S g
2 3 £ % -
— <
o
§ h |
8 o
o — — [—1— ? 1 — L [—{ 1 |
| | I I I 8 | | | | |
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
I(DUA) I(ATP)
Fig. 10: Normalized DUA trace location Fig. 11: Normalized ATP trace location
-
e S
/ \
| \
DUA ATP

Execution trace

LAVA: Large-Scale Automated Vulnerability Addition

@ Limitations and Caveats

!
NYU

e (General limitations:

e Some types of vulnerabilities probably can't be injected using
this method — e.g., weak crypto bugs

 More work is needed to see if these bugs can improve bug-
finding software

* Implementation limits:
e Currently only works on C/C++ programs in Linux
e Only injects buffer overflow bugs

* \Works only on source code

LAVA: Large-Scale Automated Vulnerability Addition

& Future Work *

!
NYU

e Continuous on-line competition to encourage
self-evaluation

* Use in security competitions like Capture the
~lag to re-use and construct challenges on-
the-fly

LELECINIERE 2SN

* Improve and assess realism of LAVA bugs

* More types of vulnerabilities (use after free,
command injection, ...)

* More interesting effects (prove exploitability!)

LAVA: Large-Scale Automated Vulnerability Addition

: 30
Conclusions

NYU

* Presented a new technigue that is capable of
quickly injecting massive numbers of bugs

 Demonstrated that current tools are not very good
at finding these bugs

* |t these bugs prove to be good stand-ins for real-
world vulnerabilities, we can get huge, on-demand
bug corpora

LAVA: Large-Scale Automated Vulnerability Addition

: 31
Questions?

| |
? %“‘?0“

9,
N\
Z%00110\S° ")

L
<

)

=)
‘5Q7\<3

llOOlOOlOlOOlllOLollo

OOLOLO@LLLD
0110000101001 oLotRodi00L0L00L L1y,
Io
Q [—J
\ P
S
000\

LAVA: Large-Scale Automated Vulnerability Addition

