
NNoculation: Catching BadNets in the Wild
Akshaj Kumar Veldanda

New York University
New York, USA
akv275@nyu.edu

Kang Liu
Huazhong University of Science and

Technology
Wuhan, China

kangliu@hust.edu.cn

Benjamin Tan
University of Calgary

Calgary, Canada
benjamin.tan1@ucalgary.ca

Prashanth Krishnamurthy
New York University

New York, USA
prashanth.krishnamurthy@nyu.edu

Farshad Khorrami
New York University

New York, USA
khorrami@nyu.edu

Ramesh Karri
New York University

New York, USA
rkarri@nyu.edu

Brendan Dolan-Gavitt
New York University

New York, USA
brendandg@nyu.edu

Siddharth Garg
New York University

New York, USA
sg175@nyu.edu

(a) BadNet Training

Quarantined
Set

Clean
Validation Data

Clean
Validation Data

Data
Augmentation

Re-training with high
learning rate

GoodNetNoisy
Validation Data

 Test Inputs (Potentially Backdoored)

=Output
Prediction

NoYes

CycleGANTraning Data
Poisoning

DNN Training
Algorithm

Clean
Training Data

Poisoned
Training Data

BadNet

Generator

BadNet

(b) Pre-deployment Defense (d) Cycle-GAN Training(c) Deployment
Quarantined Set

Clean
Validation Data

Correctly labeled
backdoors

(e) Re-deployment

Retrain BadNet
and GoodNet

Figure 1: An overview of NNoculation: (a) BadNet Training: First, the user/defender acquires a potential BadNet. (b) Pre-
deployment Defense: The BadNet is retrained with noise-augmented validation data and high learning rate to obtain GoodNet.
(c) Deployment: The BadNet and GoodNet are deployed as an ensemble that will either quarantine a test input if the outputs
disagree or give a prediction if outputs agree. The quarantined set will mostly comprise poisoned inputs. (d) CycleGAN Train-
ing: A CycleGAN is trained on clean validation data and quarantined samples to output a generator that learns to generate
correctly labeled poisoned inputs. (e) Re-deployment: Correctly labeled backdoor inputs are used to retrain the BadNet and
GoodNet which are then deployed in the field, thus repeating the cycle from step (c). Dark red (BadNet) and dark green (Good-
Net) denote networks with high and low attack success rates respectively.

ABSTRACT
This paper proposes a novel two-stage defense (NNoculation)
against backdoored neural networks (BadNets) that, repairs a Bad-
Net both pre-deployment and online in response to backdoored
test inputs encountered in the field. In the pre-deployment stage,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AISec’21, November 15, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8657-9/21/11. . . $15.00
https://doi.org/10.1145/3474369.3486874

NNoculation retrains the BadNet with random perturbations of
clean validation inputs to partially reduce the adversarial impact of
a backdoor. Post-deployment, NNoculation detects and quarantines
backdoored test inputs by recording disagreements between the
original and pre-deployment patched networks. A CycleGAN is
then trained to learn transformations between clean validation and
quarantined inputs; i.e., it learns to add triggers to clean validation
images. Backdoored validation images alongwith their correct labels
are used to further retrain the pre-deployment patched network,
yielding our final defense. Empirical evaluation on a comprehen-
sive suite of backdoor attacks show that NNoculation outperforms
all state-of-the-art defenses that make restrictive assumptions and
only work on specific backdoor attacks, or fail on adaptive attacks.
In contrast, NNoculation makes minimal assumptions and provides

https://doi.org/10.1145/3474369.3486874

an effective defense, even under settings where existing defenses
are ineffective due to attackers circumventing their restrictive as-
sumptions.
CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning; Computer vision;

KEYWORDS
Backdoored DNN; Pre- and post-deployment defense

ACM Reference Format:
Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan, Prashanth Krishna-
murthy, Farshad Khorrami, Ramesh Karri, Brendan Dolan-Gavitt, and Sid-
dharth Garg. 2021. NNoculation: Catching BadNets in the Wild. In Proceed-
ings of the 14th ACM Workshop on Artificial Intelligence and Security (AISec
’21), November 15, 2021, Virtual Event, Republic of Korea. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3474369.3486874

1 INTRODUCTION
There is growing concern about the vulnerability of deep learning
to backdooring (or Trojaning) attacks [4, 11, 24, 27, 32], wherein an
adversary compromises a deep neural network’s (DNN) training
data and/or training process with malicious intent. The vulnera-
bility arises because users often do not have the computational
resources to train complex models and/or the ability to acquire
large, high-quality labeled training datasets required for high ac-
curacy [8, 12, 30]. Thus, users either outsource DNN training to
untrusted third-party clouds or source pre-trained DNN models
from online repositories like the CaffeeModel Zoo [1, 16] or GitHub.
This opens the door to DNN backdooring [4, 11, 27, 32]: an adver-
sary can train and upload a DNN model that is highly accurate on
clean inputs (and thus on the user’s validation set), but misbehaves
when inputs contain special attacker-chosen backdoor triggers.
Such maliciously trained DNNs have been referred to as “BadNets."
For example, Gu et al. [11] demonstrated a traffic sign BadNet with
state-of-the-art accuracy on regular inputs, but that classifies a stop
sign with a Post-it note as a speed-limit sign.

Recent research has sought to mitigate the backdooring threat
by detecting backdoored models or inputs (e.g., [9, 26]), and/or
disabling backdoors (e.g., [23, 29, 43]). However, existing defenses
make restrictive assumptions (Table 1) that are easily circumvented
by an adversary [41]. One line of work [29, 43] makes strong as-
sumptions about the size and shape of the trigger, i.e, trigger is
small, regularly shaped and super-imposed on the image [43] or that
the trigger size and shape are known to the defender [29]. A second
line of work [23, 26] assumes that the BadNet encodes the presence
of a trigger using one (ABS [26]) or a few [23] dedicated neurons
referred to as “backdoor neurons." Finally, all defenses except Fine-
pruning assume an “all-to-one" attack, i.e., the BadNet mis-classifies
any backdoored input as belonging to a single attacker chosen class.
However, these defenses do not scale to a broader range of attacker
objectives including “all-to-all" attacks [11] wherein the target class
depends on the class of the input. STRIP [9], a recent defense, relies
on this assumption. Because of these in-built assumptions, these
prior works have restricted applicability and are susceptible to
adaptive attacks, as we show in subsection 5.3.

Table 1: Comparison of existing defenses in terms of the re-
strictive assumptions they make on trigger size and shape
(TSS), existence of backdoor neurons (BN) that exclusively
encode backdoors, and impact of the attack being limited to
a single target label (A21).

BadNet Defense Restrictive Assumptions

TSS BN A21

NeuralCleanse [43] #
Generative Modeling [29] #
Fine Pruning [23] # #
ABS [26] #
STRIP [9] # #
MNTD [45] # #
NNoculation (This Work) # # #

In this paper, we propose NNoculation, a new, general, defense
against DNN backdooring attacks that relaxes the restrictive as-
sumptions in prior work. Like NeuralCleanse and Fine-pruning,
NNoculation also seeks to recover the backdoor trigger and re-train
the BadNet with poisoned but correctly labeled data, thus unlearn-
ing bad behaviour. The challenge, however, is that the attacker has
an asymmetric advantage, i.e., choosing from the vast space of back-
door patterns as long as they are not in the defender’s validation
data. Existing defenses mitigate this asymmetry by narrowing the
search space of triggers via the restrictive assumptions listed in
Table 1. Our key observation is that the defender has a unique op-
portunity to level the playing field post-deployment. That is, the test
inputs to a deployed BadNet under attack must contain actual trig-
gers; if the defender can identify even a fraction of backdoored test
inputs, the search space of triggers can be narrowed considerably.

Based on this observation, NNoculation patches BadNets in two
phases: 1) pre-deployment using clean validation data (as in prior
work), and 2) post-deployment bymonitoring test inputs, as depicted
in Figure 1. In the pre-deployment defense, NNoculation avoids
assumptions about the trigger shape, size or location and instead
retrains the BadNet with randomly perturbed validation data using a
high learning rate (see subsection 3.2). That is, instead of defending
against specific triggers, we seek robustness against a broad range
of untargeted perturbations from clean inputs. Our pre-deployment
defense yields a patched DNN, which we refer to as a "GoodNet,"
that reduces the attack success rate to between ∼0% and ∼43% on
BadNets, even where existing defenses are ineffective.

Post-deployment, we use the GoodNet from the previous step
to identify possible poisoned inputs, i.e., those on which the Bad-
Net and GoodNet differ. These inputs are quarantined and, over
time, yield a dataset of inputs containing triggers (Figure 1(c)).
We then train a CycleGAN to convert images from the domain
of clean validation data to that of the quarantined data. In other
words, we teach the CycleGAN to add triggers to clean validation
data (Figure 1(d)). Thus, we obtain a dataset of backdoored inputs
with high-quality triggers and their corresponding clean labels (see
detailed description in subsection 3.3). We then re-train both the
BadNet and GoodNet using this dataset, and redeploy the patched

https://doi.org/10.1145/3474369.3486874

networks (Figure 1(e)). Our final defense reduces the attack success
rate down to 0% − 3% with minimal loss in classification accuracy
(see subsection 5.2). Our post-deployment defense can be invoked
multiple times in the field, thus enabling NNoculation to learn and
adapt to new backdoor triggers continuously. Our code is available
at: https://github.com/akshajkumarv/NNoculation.

Contributions Our new contributions in this paper are:

• We propose NNoculation, a novel end-to-end defense against
BadNets with minimal assumptions on the attack modalities
including trigger size, shape and location, and impact.

• To the best of our knowledge, NNoculation is the first BadNet
defense that uses a combination of offline and onlinemethods
to continuously learn and adapt to actual backdoor behaviour
observed in the field. NNoculation reliably reverse engineers
BadNet triggers over a range of attacks.

• The first detailed side-by-side evaluation of state-of-the-art
backdoor defenses against a wide range of backdoor attacks,
ranging from a simple attack (single trigger, single target) to
complex attacks that include multiple triggers and multiple
targets. Comparisons of NNoculation with prior work show
that it is the only defense that works comprehensively across
a range of attacks, while prior defenses fail completely when
their narrow assumptions are violated.

2 THREAT MODEL
We adopt the backdooring threat model from prior work [11, 23,
26, 27, 29, 43]. We model two parties: a user (or defender) who
seeks to deploy a DNN for a target application by sourcing a trained
model for that application from an untrusted party, the attacker.
The attacker abuses the training process and returns a backdoored
DNN, which misbehaves on images with backdoor triggers but
otherwise provides acceptable performance on “clean” inputs. In
this model, the user only has access to a small set of clean, correctly
labeled images—primarily for validating the quality of the sourced
model—that they can use to detect or remove backdoors. Note that
the backdooring threat model is stronger than that used in data
poisoning attacks [5, 6, 31, 40] addressed in literature. First, in data
poisoning attacks, the user trains the model, while in backdooring
the attacker controls the training process. Second, in data poisoning,
the user has access to the training set, containing both clean and
poisoned images (but doesn’t know which is which) [42], while
in backdooring, the user only has a small validation set of clean
images. Our assumptions about the attacker’s and defender’s goals
and capabilities in the backdooring threat model are detailed below.

2.1 Attacker’s Goal and Capabilities
The attacker has access to large and high-quality clean training
dataset D𝑐𝑙

𝑡𝑟 drawn from distribution P𝑐𝑙 . Let 𝑓\𝑐𝑙 denote the DNN
obtained by benignly training on D𝑐𝑙

𝑡𝑟 . The attacker instead seeks
to train a BadNet 𝑓\𝑏𝑑 that agrees with 𝑓\𝑐𝑙 on input 𝑥 drawn
from P𝑐𝑙 , but misbehaves when 𝑥 is modified using a trigger in-
sertion function 𝑥𝑝 = poison(𝑥). Misbehaviour in targeted attack
can be represented as argmax 𝑓\𝑏𝑑 (𝑥

𝑝) = T (𝑥𝑝) where T (𝑥𝑝) is
an attacker-chosen class which may be different from the benign
DNN’s prediction. For instance, in prior work, if T (𝑥𝑝) = T ∗, then
all backdoor inputs are (mis)classified as a single target label T ∗.

As in prior work [11, 23, 26, 43], the attacker achieves this goal via
training data poisoning. Specifically, the attacker prepares 𝑓\𝑏𝑑 by
training on bothD𝑐𝑙

𝑡𝑟 and a set of poisoned inputs,D
𝑏𝑑_𝑝
𝑡𝑟 which are

prepared using the trigger insertion function poison(·). The hyper-
parameters of the attack include the fraction, 𝑝 , of poisoned training
data, in addition to the hyper-parameters of the training process.
The attacker optimizes the attack hyper-parameters such that 𝑓\𝑏𝑑
maintains good accuracy on D𝑐𝑙

𝑣𝑎𝑙𝑖𝑑
but reliably misbehaves on

D𝑝

𝑣𝑎𝑙𝑖𝑑
. Once an unsuspecting user deploys the BadNet, the attacker

triggers the DNN misbehavior by providing poisoned test data 𝑥𝑝
containing the backdoor trigger.

2.2 Defender’s Goals and Capabilities
The user (referred to interchangeably as the defender) wishes to
deploy a DNN for the application advertised by the attacker, but
does not have the resources to acquire a large, high-quality dataset
for it. Instead, the user downloads the DNN, 𝑓\𝑏𝑑 , uploaded by
the attacker, and uses a small validation dataset, D𝑐𝑙

𝑣𝑎𝑙𝑖𝑑
, of clean

inputs to verify the DNN’s accuracy. In addition, the user seeks
to patch 𝑓\𝑏𝑑 to eliminate backdoors—ideally, the patched DNN
should output correct labels for backdoored inputs, or detect and
classify them with a warning.

Tomeet these goals, the user has access to two assets pre-deployment:
full, white-box access to 𝑓\𝑏𝑑 and a small clean validation dataset
D𝑐𝑙

𝑣𝑎𝑙𝑖𝑑
. Post-deployment, the user also has full access to the online

stream of inputs D𝑠𝑡𝑟𝑒𝑎𝑚 seen by the deployed model. As in prior
work [26, 43], we do not bound (but will seek to minimize) the
user’s computational effort, i.e., the user’s primary limitation is the
paucity of high-quality training data, not computational resources.

2.3 Security Metrics
We evaluate our defense successes based on the following two
metrics, evaluated using a held-out test dataset D𝑡𝑒𝑠𝑡 that emulate
post-deployment inputs: (1) Clean Data Accuracy (CA), defined
as the percentage of clean test data that is correctly classified; (2)
Attack Success Rate (ASR), percentage of backdoored test images
classified as backdoors. Our defense seeks to lower ASR (reducing
power held by attacker) while minimizing impact on CA.

3 NNOCULATION DEFENSE
In this section, we describe NNoculation in more detail.

3.1 Overview
We begin with a high-level overview of NNoculation. NNoculation
is a two stage defense. First, the user (defender) acquires a DNN—a
potential BadNet 𝑓\𝑏𝑑 . In the first stage, i.e., the pre-deployment
stage, the defender retrains 𝑓\𝑏𝑑 with an augmented dataset con-
taining both clean validation data D𝑐𝑙

𝑣𝑎𝑙𝑖𝑑
and noisy versions of the

clean input at a “high" learning rate. Retraining with augmented
data aims to stimulate a wide range of behaviours in the DNN, and
forces the DNN to pay more attention to the unmodified portions
of the image, thus reinforcing “good" behaviours. In addition, a
high learning rate nudges the BadNet away from its learned “bad"
behaviours. The result is a new DNN, \𝑔𝑑 , with reduced, but not
zero, ASR. We then deploy 𝑓\𝑏𝑑 and 𝑓\𝑔𝑑 as an ensemble.

https://github.com/akshajkumarv/NNoculation

Figure 2: Shortcomings of NeuralCleanse: The leftmost im-
age is the actual trigger; the other images are incorrectly
reverse-engineered triggers by NeuralCleanse.

In the post-deployment stage, inputs (in D𝑠𝑡𝑟𝑒𝑎𝑚) that disagree
between 𝑓\𝑏𝑑 and 𝑓\𝑔𝑑 are marked as suspects and quarantined. As
long as the pre-deployment reduces ASR (even if not down to zero),
the quarantined dataset likely includes attacker-poisoned data. Now,
using the clean validation dataset and quarantined dataset, we learn
the function poison(𝑥) using a CycleGAN𝐺 that transfers between
the two domains (in effect, the CycleGAN learns to poison clean
data!). We then use the reverse-engineered trigger to retrain \𝑏𝑑
and \𝑔𝑑 , this time with correctly labeled examples of backdoors.
This reduces ASR down to near zero, while preserving CA. Online
retraining can be redeployed if further backdoor inputs are detected.

3.2 Pre-Deployment Defense
Shortcomings of existing defenses: Pre-deployment defense is mo-

tivated by shortcomings observed in prior work, specifically, Fine-
pruning and NeuralCleanse. Fine-pruning [23] is based on the ob-
servation that backdoor and clean inputs excite different neurons
in a BadNet. The defense first prunes neurons unactivated by clean
validation data, suspecting them of encoding backdoors, and then
uses the clean validation data to re-train the pruned network. In
our experiments, however, we found several BadNets wherein clean
and backdoored inputs excited the same neurons — pruning these
neurons resulted in large drops in clean CA that could not be recov-
ered via retraining. Hence, NNoculation’s pre-deployment defense
eschews the initial pruning step, but instead, performs re-training
with noise augmentation using a high learning rate.

Noise augmentation: Noise augmentation is motivated by short-
comings of NeuralCleanse [43]. This method seeks to directly re-
cover triggers from BadNets by finding the smallest contiguous
overlay that causes any input to be mis-classified as a unique target
label. In practice, triggers need not be small or contiguous. For
example, in Figure 2 we illustrate the output from NeuralCleanse
given BadNets triggered by a large, but semantically meaningful,
sunglasses trigger for face recognition [23]. The recovered trig-
gers bear little resemblance to the original, missing its size, shape,
and color. However, we find that in some instances, given oracular
knowledge of the attacker’s target label, NeuralCleanse is able to
find small patches of the trigger, and that retraining with only a
small part of the trigger reduces ASR, although not down to zero.

Instead of reverse engineering (parts of) the trigger (which is
time-consuming and rarely works [43]), in NNoculation we seek to
cast a wide net by adding random noise to validation images, with
the hope of catching some aspects of the trigger pre-deployment.
Specifically, we use a noise augmentation function 𝐴(D, [, 𝛾) that
randomly samples 𝛾 fraction of pixels from an image and replaces
them with values sampled from distribution [. We then add noise
to images in the clean validation set, D𝑐𝑙

𝑣𝑎𝑙𝑖𝑑
, using 𝐴 and re-train

on clean and noise augmented validation sets.

Table 2: Example of grid search algorithm for BadNet-FSA
to pick \𝑔𝑑 . The baseline CA is 91.34% and all networks with
up to \ = 3% drop in CA are shown in bold font. The network
picked is starred.

𝛾 𝛼=0.001 𝛼=0.003 𝛼=0.004 𝛼=0.005 𝛼=0.006

10% 92.55 86.79 85.3 81.86 83.9
20% 93.3 88.27 87.53 80 81.48
30% 93.39 88.46 85.3 87.72 83.72
40% 92.09 90.41 86.04 81.39 82.41
50% 92.46 89.02 87.06 82.13 83.62
60% 93.58 88.46 88.46* 86.13 84.65

Finding the optimum learning rate and noise level: To coax the
BadNet to unlearn its misbehaviour, we seek to retrain the BadNet
with the highest possible learning rate and noise level while keeping
the drop in clean accuracy below a user-specified threshold \ . To do
so, we perform a grid search over varying noise levels and learning
rates, and (i) first select networks that have clean accuracy within
threshold \ of the BadNet’s accuracy, then (ii) of these, we further
pick networks trained with the largest learning rate, and finally (iii)
of the remaining, we select the network with the highest noise level.
An example of a grid search for BadNet-FSA is shown in Table 2. In
this example, we found networks at 𝛼 = 0.001, 0.003, 0.004 above
our CA threshold, and picked the network with 𝛼 = 0.004 and
𝛾 = 60% as our pre-deployment GoodNet.

3.3 Post-Deployment Defense
The input to NNoculation’s post-deployment defense is the patched
network, \𝑔𝑑 , from the pre-deployment stage. In the field, we deploy
\𝑔𝑑 in parallel with \𝑏𝑑 to detect backdoored inputs in D𝑠𝑡𝑟𝑒𝑎𝑚 —if
the two disagree, we predict that the input is backdoored and output
\𝑔𝑑 ’s prediction, else, we output their common prediction. We refer
to this parallel combination as an ensemble.

After deploying the ensemble, the system begins to receive unla-
beled data for classification, D𝑠𝑡𝑟𝑒𝑎𝑚 . We assume that the attacker
will try to attack the system—some fraction of D𝑠𝑡𝑟𝑒𝑎𝑚 includes
poisoned data containing the trigger. The exact proportion of poi-
soned data is unknown to the defender. Since the clean accuracies
of 𝑓\𝑏𝑑 and 𝑓\𝑔𝑑 are close, disagreements will arise largely from
poisoned inputs, and thus we expect the quarantined dataset to
have a reasonable fraction of backdoors.

Once sufficiently many images, N , have been collected in the
quarantined dataset the defender trains a CycleGAN where domain
1 is represented byD𝑐𝑙

𝑣𝑎𝑙𝑖𝑑
and domain 2 byD𝑞𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒 . We use the

CycleGAN architecture proposed by [46] with nine residual blocks
in its generator, 𝐺 , and a discriminator based on a 70×70 Patch-
GAN [14]. The CycleGAN’s complete architectural parameters are
described in Appendix A.3.

The resulting generator,𝐺 approximates the attacker’s poison(𝑥)
function. Using 𝐺 , the defender creates a new “treatment" dataset
by executing the CycleGAN’s generator on clean validation inputs,
D𝑡𝑟𝑒𝑎𝑡 = 𝐺 (D𝑐𝑙

𝑣𝑎𝑙𝑖𝑑
), and labeling the resulting images with labels

from the validation set.
Finally, the defender fine-tunes \𝑏𝑑 and \𝑔𝑑 , using D𝑡𝑟𝑒𝑎𝑡 and

D𝑐𝑙
𝑣𝑎𝑙𝑖𝑑

producing repaired networks, \𝑏𝑑′ and \𝑔𝑑′ , respectively.

These networks are then deployed, again as an ensemble, to enable
continuous repair in response to new attacks. For example, consider
a setting where the BadNet has multiple triggers, but the attacker
only uses a subset of triggers in the initial attack and uses the
remaining triggers after the first round of repair. Poisoned data
with the new triggers will be quarantined by the repaired networks
which will be treated again once sufficiently many instances of the
new trigger are collected.

4 EXPERIMENTAL SETUP
In this section, we describe our experimental setup. All our experi-
ments are on a desktop computer with Intel CPU i9-7920X (12 cores,
2.90 GHz) and single Nvidia GeForce GTX 1080 Ti GPU.

4.1 BadNet Preparation and Attack Settings
To comprehensively evaluate NNoculation, we prepare several Bad-
Nets on MNIST [20], CIFAR-10 [19], German Traffic Sign Recog-
nition Benchmark (GTSRB) [34], YouTube Aligned Face [44], and
ImageNet datasets [7]. We report the number of classes, and the
number of training, validation and test samples per class for each
dataset in Table 3. We implemented several previously reported and
three new attacks (MTSTA, MTMTA and TCA) on these datasets
using the attack training hyper-parameters reported in Table 4. The
attacks are described below and examples of triggers corresponding
to each attack are shown in Figure 3. The baseline CA and ASR for
the BadNets are reported in Table 5.

All-to-One Attack: Any poisoned input will be classified as the
attacker chosen target label. BadNet-SG and BadNet-LS are trained
on YouTube Aligned Face dataset using sunglasses (sg) and lipstick
(ls) as the trigger respectively. Similarly, BadNet-PN is trained on
GTSRB with variable location post-it note trigger. Additionally,
to evaluate the scalability of NNoculation on large datasets and
complex architecture, we train BadNet-IN with a DenseNet-121 [13]
architecture using ImageNet dataset, choosing a red square as the
trigger. All these BadNets have target label, T = 0, consistent with
prior work (e.g., as in [23, 26]).

All-All Attack (AAA) [11]: In the presence of the trigger, the
backdoor will cause an input with ground truth label y to be classi-
fied with target label y+1. BadNet-AAA is trained on MNIST dataset
using a fixed pixel pattern trigger.

Multi-Trigger Single-Target Attack (MTSTA): The attacker
uses multiple triggers but the backdoor has only one target label.
BadNet-MTSTA is trained on YouTube Aligned Face dataset using
three triggers: lipstick (ls), eyebrow highlighter (eb) and sunglasses
(sg). All these triggers will activate the backdoor to classify a poi-
soned input with the target label, T = 4.

Multi-Trigger Multi-Target Attack (MTMTA): The attacker
uses multiple triggers, where poisoning any input with one of the
triggers will cause the BadNet to classify the input with the trig-
ger’s corresponding target. BadNet-MTMTA is trained on YouTube
Aligned Face dataset using three triggers with three corresponding
target labels: ls (T = 1), eb (T = 5) and sg (T = 8).

Feature Space Attack (FSA) [26]: The attacker uses transfor-
mations in input space that lead to patterns in feature space. BadNet-
FSA is trained on GTSRB using Gotham Filter as the feature space
trigger. Applying the filter to any input will cause the BadNet to
output the target label, T = 35.

Trigger Combination Attack (TCA): In this attack, the back-
door is activated only in the presence of a combination of triggers;
it ignores any trigger appearing by itself. BadNet-TCA is trained
on CIFAR-10 dataset using a combination of red square and yellow
triangle as the trigger and T = 7.

4.2 NNoculation Parameters
4.2.1 Set-up of Pre-deployment Defense. Weuse the Python imgaug [17]
library to prepare our noise augmented datatsets using a Gaussian
noise distribution, [, (𝑚𝑒𝑎𝑛 = 128 and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 51.2) which are
the default out-of-the-box options in the library. The noise fraction
𝛾 varies from 10%-60% in increments of 10%. The initial learning
rate for pre-deployment training, 𝛼0, is set to the original learn-
ing rate of the corresponding BadNet and increased in multiples
thereafter.
4.2.2 Set-up for Post-deployment Defense. Post-deployment de-
fense is triggered after the first N = 200 quarantined images are
collected, at which point the CycleGAN [46] is trained on the quar-
antined dataset collected thus far and 500 images from D𝑐𝑙

𝑣𝑎𝑙𝑖𝑑
. All

networks in the CycleGAN are trained from scratch for 200 epochs
using Adam optimizer [18], with an initial learning rate of 0.0002
with linear decay after the first 100 epochs [33, 46]. More details
about CycleGAN network architecture and training details are pre-
sented in Appendix A.3.

4.3 Baselines for Comparison
We compareNNoculationwithNeuralCleanse [43], Fine-pruning [23],
STRIP [9], and Qiao et al.’s approach [29] using their reference
implementations where possible. NeuralCleanse and Qiao et al.
attempts to identify the attacker’s target label. However, Neural-
Cleanse identifies the correct target label for only 2 out of 8 BadNets
and Qiao et al. fails on all BadNets. In the situations where Neural-
Cleanse and Qiao et al.’s defenses are unable to determine the target
label, we endow those defenses with “oracular knowledge" of the
target label so that they can generate a result. We used FAR/FRR
for STRIP to be consistent with the paper, but these can also be
easily translated to ASR and CA (𝐴𝑆𝑅𝑆𝑇𝑅𝐼𝑃 = 𝐴𝑆𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 𝐹𝐴𝑅

and 𝐶𝐴𝑆𝑇𝑅𝐼𝑃 = 𝐶𝐴𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × (100 − 𝐹𝑅𝑅)). Finally, two recent
defenses, ABS [26] and the very recent Meta Neural Trojan Detec-
tion (MNTD) [45], are different from previous defenses (including
NNoculation) because they detect whether an entire network is
backdoored. We compare them separately. Also, ABS provides an
executable that works on CIFAR-10, and thus we could compare
NNoculation with ABS only on BadNet-TCA.

5 EXPERIMENTAL RESULTS
5.1 Efficacy of Pre-deployment Defense
Figure 4 plots the CA and ASR of our pre-deployment defense on
BadNet-SG for varying learning rates (𝛼) and noise levels (𝛾). Ta-
ble 5 presents additional results of pre-deployment treatment on
all remaining BadNets. The results are qualitatively similar (see
Appendix Figure 8).

Across all experiments, increasing 𝛼 and𝛾 results in a drop in CA
(ranging from 0.16% to the largest drop of 15.63%) and a reduction in
ASR (in some case down to 0%). Varying 𝛼 and 𝛾 allows one to bal-
ance ASR reduction and CA loss. For all BadNets, there is at least one

Table 3: Baseline BadNet Preparation: dataset split, trigger, and target label

BadNet Attack Setting Dataset # of classes Train samples
per class

Valid samples
per class

Online Stream
+ Test samples

per class
Trigger Target label

AAA All-All MNIST 10 5500 450 1000 Patterned
trigger y → y+1

TCA Trigger Comb. CIFAR-10 10 5000 500 450 Yellow triangle
+ red square 7

PN Simple GTSRB 43 820 90 270 Post-it note 0
FSA Feature Space Gotham filter 35

SG Simple

YouTube Face 1283 81 9 8

sg 0
LS Simple ls 0

MTSTA* Multi-trigger, single taget ls, eb, sg 4,4,4
MTMTA* Multi-trigger, multi-target ls, eb, sg 1,5,8

IN Simple ImageNet 1000 1200 25 20 Red square 0
* for MTSTA and MTMTA, ls, eb, sg corresponds to lipstick, eyebrow, sunglasses trigger, respectively

BadNet-MTSTA BadNet-MTMTABadNet-FSABadNet-AAA BadNet-TCA

original label

BadNet-SG BadNet-INBadNet-PN BadNet-LS

original label

Figure 3: Examples of the datasets, triggers, and target labels used in this study.

% Noise Added (𝜸)

C
le

an
 A

cc
ur

ac
y

(%
)

85

90

95

100

10 20 30 40 50 60

Baseline Target α = 1 α = 3 α = 3.5 α = 4

(a) BadNet-SG CA (pre-)

% Noise Added (𝜸)

A
S

R
 (%

)

0

25

50

75

100

10 20 30 40 50 60

α = 1 α = 3 α = 3.5 α = 4

(b) BadNet-SG ASR (pre-)

Fraction of Test Images Poisoned (%)

(%
)

0

25

50

75

100

2 4 6 8

CA ASR

(c) BadNet-SG CA and ASR (post-)

Figure 4: (a) and (b) show the effect of pre-deployment treatment onCA (on evaluation data) andASR (on test data), respectively,
under varying learning rate (𝛼) and noise (𝛾) settings for BadNet-SG. (c) Effect of post-deployment treatment on CA and ASR
(both measured on test data) on BadNet-SG from re-training with data produced by the CycleGAN prepared with quarantined
data for varying poison/clean input data stream ratios within D𝑠𝑡𝑟𝑒𝑎𝑚 .

Table 4: Training hyper-parameters of baseline BadNets

AAA CLA TCA PN, FSA SG, MTSTA, INLS, MTMTA

Architecture [9] Custom DeepID [36] [43] NiN [22] DenseNet-121 [13]
batch size 32 32 128 32 1283 256
epochs 50 25 200 15 200 12
learning rate 1e-4 1 0.01* 1e-3 1 0.01**
optimizer Adam Adadelta SGD Adam Adadelta SGD
preprocessing 1./255 1./255 (·)−`

𝜎 1./255 1./255 (·)−`
𝜎

* scheduler: lr = 0.01 if epoch ≤ 80; 0.005 if 80 < epoch ≤ 140; else 0.001
** scheduler: lr = 0.01 if epoch ≤ 4; 0.001 if 4 < epoch ≤ 8; else 0.0001

parameter setting that provides an ASR (below 44%) and CA (∼ 3%
less than baseline) that makes our pre-deployment defense alone
competitive with prior works. NNoculation’s pre-deployment de-
fense is Pareto optimal for 7/8 BadNets (except BadNet-PN), whereas
Fine-Pruning, Neural Cleanse (without oracle access) and STRIP are
pareto optimal for 3/8 , 2/8 and 1/8 respectively. More importantly,
the pre-deployment defense results in a large enough drop in ASR
to ensure the success of the post-deployment step.

5.2 Efficacy of Post-deployment Defense
To understand NNoculation’s post-deployment defense, we show
examples of the reverse-engineered triggers produced by the Cycle-
GAN in Figure 5. Across the board, NNoculation faithfully learns to
add triggers to clean images, even though it has access to only 200
quarantined images. This is consistent with results from the original
CycleGAN paper [46] that achieved high-quality reconstructions
on small datasets with as few as 400 images, for example, on the
facades ↔ photographs and artistic style transfer tasks, especially
where domains are similar.

Although we can obtain higher quality reconstructions with
larger quarantined datasets (see 6.3), these are not needed because
exact trigger reconstruction is not necessary for backdoor unlearn-
ing [26, 43]. Thus we are able to keep the size of the quarantined
dataset small.

NNoculation works even if the attacker poisons a relatively small
fraction ofD𝑠𝑡𝑟𝑒𝑎𝑚 . For BadNet-SG, we observe that as the attacker

Table 5: Performance of NNoculation (with 3% Threshold) on baseline BadNets in comparison with prior work. Final NNoc-
ulation solution corresponds to the post-deployment defense and the results highlighted in bold font correspond to Pareto
optimal solutions

.BadNet (Baseline) NNoculation (pre-) NNoculation (post-) Fine-Pruning NeuralCleanse STRIP (FRR=5%) Qiao et al. [29]
BadNet CA ASR CA ASR CA ASR CA ASR CA ASR FAR CA ASR

MNIST-AAA 97.76 95.91 95.3 0 96.21 0 91.31 2.17 Fails 98.39 Fails

CIFAR10-TCA 87.71 99.9 83.6 4.36 84.14 2.31 78.77 42.28 88.59† 99.82† 22.22 out of scope

GTSRB-PN 95.46 99.82 92.9 13.37 93.01 0 92.25 24.12 95.24 12.39 90.28 out of scope
GTSRB-FSA 95.08 90.06 93.26 3.28 92.3 3.24 88.38 3.79 95.8 28.99 98.34 93.65† 5.58†

YouTube-SG 97.89 99.98 94.18 35.22 92.03 0 91.40 30.12 95.74† 38.09† 7.6 77.64† 1.88†

YouTube-LS 97.19 91.51 93.99 32.34 93.15 0 91.58 1.67 97.14† 28.44† 16.11 out of scope
YouTube-MTSTA* 95.84 {92.2, 92.2, 100} 92.81 {36.5, 3.1, 0} 92.37 {1.86, 0, 0} 91.61 {0, 2, 68.3} 93.37† {0, 0, 8.7}† {11, 53.7, 4.9} out of scope
YouTube-MTMTA* 95.93 {91.5, 91.4, 100} 92.2 {30, 7.1, 13.6} 91.48 {0, 0, 1.2} 90.36 {2.2, 13.8, 0} 94.18† {30.8, 0, 95.7}† {14.1, 44.3, 3} out of scope

* for MTSTA and MTMTA, the ASR corresponds to using lipstick, eyebrow, sunglasses trigger, respectively. †we give oracular knowledge to these defenses

BadNet-AAA BadNet-PN

BadNet-TCA

BadNet-MTSTABadNet-MTSTA BadNet-MTSTA

BadNet-PN BadNet-FSA

BadNet-MTMTABadNet-MTMTA BadNet-MTMTA

BadNet-AAA

BadNet-INBadNet-SG BadNet-LS
Figure 5: Examples of the CycleGAN-based trigger reverse-
engineering. For each BadNet, the left image corresponds to
the clean input and the right image corresponds to the poi-
soned image generated by the CycleGAN.
poisons more than 4% of inputs in D𝑠𝑡𝑟𝑒𝑎𝑚 , NNoculation’s ASR
drops to almost zero (see 4c), while the clean accuracy remains
relatively constant. In other words, NNoculation forces the attacker
into an unfavorable trade-off: either poison a very small fraction of
inputs, or poison a larger fraction of inputs which are then detected
by NNoculation with close to 100% accuracy. That is, the attacker’s
effective attack success rate, the ASR times the fraction of poisoned
test inputs, is small across the board. In the next section, we evaluate
NNoculation on all our BadNets assuming that 20% of test inputs
are poisoned.

5.3 Comparisons with prior work
We compare NNoculation with state-of-art defenses in Table 5, ex-
cept for ABS and MNTDwhich are compared separately since these
defenses have different goals than the others. Most prior defenses
do not provide fine-grained knobs to trade-off clean accuracy (CA)
against ASR, hence we did our best to optimize their performance.

Table 6: Performance of MNTD on baseline BadNets

AAA TCA PN FSA SG LS MTSTA MTMTA

Detection Probability 99.9 0 100 59.86 49.37 56.16 49.64 50.98

In Table 5, we indicate, in bold font, defenses that are on the
Pareto front for each BadNet (excluding ones with oracle access).
We note that: (1) NNoculation (post-deployment) is Pareto optimal
for all BadNets, while the remaining defenses are on the Pareto
front for at most two BadNets; (2) NNoculation (post-deployment)
is the only defense that works consistently across all attacks.
All other defenses fail entirely for most attacks as a consequence
of their restrictive assumptions.

Quantitatively, we note that NNoculation reduces ASR to below
4%, and in most cases, to 0%. In return, NNoculation also incurs
a drop in CA ranging from 1.5% to 5.8% with an average drop
of 3.5%. However, we note the other defenses have even lower
CA (and higher ASRs). NeuralCleanse (disregarding cases where it
has oracular knowledge) has higher accuracy on GTSRB-PN and
GTSRB-FSA, but also much higher ASR (12% and 28% respectively).

ABS [26] relies on the assumption that a single neuron controls
the backdoor behavior. This assumption is easily circumvented by
our BadNet-TCA attack that uses two triggers and activates the
backdoor only when both triggers are present. Hence, multiple
neurons are required to encode backdoors, and ABS’s assumptions
are violated. Indeed, ABS fails to detect BadNet TCA. In contrast,
NNoculation reduces the ASR to only 2.3% on this BadNet with
roughly 3.5% drop in clean classification accuracy. Since the ABS
executable only works on the CIFAR-10 dataset and for a specific
network architecture, we could not evaluate ABS on other attack
settings.

Meta Neural Trojan Detection (MNTD) [45] is a very recent
defense that like ABS flags a network as either backdoored or be-
nign. MNTD assumes that the triggers are overlayed in pixel-space,
although it does not constraint the size and shape of the trigger
like NeuralCleanse and Qiao et al. Table 6 shows the detection
probability of MNTD on each of the baseline BadNets. Note that
while it fails on feature space attacks (FSA), as expected, it also
fails on 5 other pixel-space BadNets, barely performing better than
random chance. We suspect this is because MNTD is only originally
evaluated on small datasets and small networks.

Table 7: Performance of NNoculation (with 3% Threshold)
on adaptive attackers during pre-deployment stage.

BadNet (Baseline) NNoculation (pre-) NNoculation (post-)
BadNet CA ASR CA ASR CA ASR

MNIST-AAA 96.74 88.82 87.38 1.3 93.22 0

CIFAR10-TCA 83.65 99.94 81.51 25.51 80.14 1.88

GTSRB-PN 95.36 99.93 94.62 0 92.97 0
GTSRB-FSA 93.47 94.15 91.06 3.11 90.07 3.48

YouTube-SG 97.99 99.95 94.33 19.8 93.43 0
YouTube-LS 96.13 91.68 93.82 14.64 93.51 0

YouTube-MTSTA 90.87 {94.2, 94.4, 100} 86.81 {0, 0, 0} 86.25 {0, 0, 0}
YouTube-MTMTA 91.09 {91.7, 92.2, 100} 87.96 {0, 0, 0} 87.79 {0, 0, 0}

Table 8: NNoculation under adaptive online attack.

NNoculation (pre-) NNoculation (post-)
(ls, eb, sg) Stage 1 (ls, eb) Stage 2 (sg)

BadNet-MTMTA CA 92.13 91.51 91.31
ASR 30, 7.12, 13.77 0, 0, 6.67 0, 0, 0

5.4 Performance Under Adaptive Attacks
Standard security practice suggests that defenses should withstand
adaptive attacks that are aware of the defense. We show that NNoc-
ulation is immune to two such attacks and leave the exploration of
more advanced adaptive attacks for future work.

Adaptive attacks against pre-deployment defense. Adap-
tive attackers could craft more robust BadNets by adding noise to
training data themselves, emulating one step of our defense. How-
ever, intuitively, this attack will fail because retraining with higher
learning rates always provides the defender with a possibility to
reduce ASR (see Figure 4). Our evaluation supports our intuition
— Table 7 shows that NNoculation under adaptive attack is compet-
itive with baseline NNoculation (both post-deployment) on all the
BadNets.

Dealing With Adaptive Online Attackers. An adaptive at-
tacker could train a BadNet with multiple triggers (such as BadNet-
MTMTA) and deploy triggers sequentially, for example, use lipstick
and eyebrow triggers first and then use the sunglasses trigger once
NNoculation retrains for the first two. However, because NNocula-
tion adapts in the field to new attacks, it reduces the ASR for lipstick
and eyebrow triggers to zero after the first round of re-training,
and that of the sunglasses trigger also to zero after the subsequent
round (see Table 8).

5.5 Sensitivity to Dataset Size
We address the performance of NNoculation on large real-world
datasets and impact of reduced access to validation data for the
defender.

NNoculation on Imagenet.WeevaluatedNNoculation on BadNet-
IN (DenseNet-121 with ImageNet) to verify the scalability of our
defense to large datasets and complex network architectures. Our
pre-deployment defense has a classification accuracy (CA) of 69.14%
(down from 71.88%) and attack success rate (ASR) of 43.45%. Using
our post-deployment defense reduces ASR to 0%, while maintaining
the CA at 68.27%.

Impact of validation dataset size. Like other defenses, NNoc-
ulation relies to some extent on the availability of clean validation
data. In our experiments, we have used standard validation dataset
sizes to evaluate NNoculation and prior work. The validation set

for YouTube Face is already tiny — it has only 9 images per class,
and training a network from scratch on validation data alone would
result in large 17% drop in accuracy on this dataset.

Nonetheless, to understand the performance of NNoculation
with even smaller validation datasets, we evaluate NNoculation on
BadNet-SG, BadNet-LS, BadNet-PN and BadNet-IN with 25%, 50%
and 75% of the original validation dataset and report the results
in Table 9. NNoculation still has relatively low ASR in all cases
except on BadNet-SGwith 25% of the original validation data, where
the ASR increases to 33%. Note, however, that 25% of the original
validation data represents only 2 samples per class for the YouTube
Face dataset. Notably, on BadNet-IN, NNoculation’s ASR is still 0%
even with 25% of the original validation data.

6 DISCUSSION
6.1 Performance on Additional Attacks

Clean Label Attack (CLA) [24]. During training, the attacker only
poisons the target class with the trigger. During test time, any input
with the trigger will be classified as the target label. BadNet-CLA
is trained on MNIST dataset using a fixed noise pattern as the
trigger and T = 0. To explore the clean label attack, we devised a
custom network architecture as described in Table 10. NNoculation
succeeds in defending against BadNet-CLA as shown in Table 11.

Imperceptible Attack [28]. The attacker uses an invisible trigger
proposed by [28] to generate the imperceptible backdoor attack.
To evaluate against this attack, we trained two BadNets on MNIST
and GTSRB datasets using network architectures proposed in [9]
and [43], respectively. The target label for both these attacks is
T = 0. We evaluated these attacks and show in Table 12, that
NNoculation defends against both. As noted in [28], we verified that
Pruning, STRIP, and NeuralCleanse fail against this imperceptible
attack.

6.2 Ablations
Pre-deployment Defense. To evaluate the effectiveness of noise

augmentation (𝐴) and adaptive learning rate (Adapt 𝛼), we evaluate
NNoculation on BadNet-SG, BadNet-LS and BadNet-PN by conduct-
ing an ablation study on the pre-deployment defense, and report
the results in Table 13. NNoculation achieves 0% ASR in all cases,
however, on BadNet-LS, NNoculation w/o {Adapt 𝛼 } achieves 1.86%
higher CA compared to NNoculation. However, NNoculation w/o
{Adapt 𝛼 } would fail on adaptive attacks against pre-deployment
defense as noted in subsection 5.4.

Post-deployment Defense. For identifying and reverse-engineering
triggers, we tried simpler alternatives, including averaging quaran-
tined images and subtracting from the average of clean validation
images. We found that averaging/subtraction works well if triggers
are additive and at fixed locations since the backdoor stands out.
However, we found this worked poorly for variable-location trig-
gers. Since our primary goal is to avoid making any assumptions on
the poison(𝑥) function, we thus moved to the CycleGAN approach
which, in theory (i.e., with a sufficiently complex network and suf-
ficient data) should be able to learn any poisoning function. Note
that the CycleGAN is a strict generalization of the simple averaging
approach aforementioned.

Table 9: Sensitivity of NNoculation (with 3% Threshold) towards different validation dataset sizes on simple baseline BadNets.

25% of validation data 50% of validation data 75% of validation data

BadNet (Baseline) NNoculation (pre-) NNoculation (post-) NNoculation (pre-) NNoculation (post-) NNoculation (pre-) NNoculation (post-)
BadNet CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA ASR

SG 97.89 99.98 95.23 87.37 85.58 33.71 95.08 72.29 87.6 11.12 94.39 61.73 90.05 2.31
LS 97.19 91.51 94.07 70.46 88.41 3.84 93.86 58.63 89.3 2.5 94.66 45.87 92.45 0
PN 97.19 91.51 91.89 36.79 91.09 5.19 93.42 0 93.32 0 94.1 0 91.27 0
IN 71.88 100 68.1 65.86 66.47 0 67.45 38.63 67 0 68.07 22.86 67.84 0

Table 10: DNN Architecture for Clean-Attack (CLA) BadNet

Layer Type # of Channels Filter Size Stride Activation

Conv 16 5 × 5 1 ReLU
MaxPool 16 2 × 2 2 -
Conv 4 5 × 5 1 ReLU

MaxPool 4 2 × 2 2 -
FC 512 - - ReLU
FC 10 - - Softmax

Table 11: Performance on BadNet-CLA

Baseline BadNet NNoculation (pre-) NNoculation (post-)
CA ASR CA ASR CA ASR

89.02 100 91.18 2.67 95.34 0

Table 12: Performance on imperceptible attacks.

BadNet (Baseline) NNoculation (pre-) NNoculation (post-)
Dataset CA ASR CA ASR CA ASR

MNIST 98.66 99.87 93.5 0 95.13 0

GTSRB 94.29 94.53 91.56 0 90.92 0

Table 13: Ablation study on pre-deployment defense.
BadNet (Baseline) NNoculation (pre-) NNoculation (post-)

BadNet Method CA ASR CA ASR CA ASR

SG

NNoc. (Proposed)

97.89 99.98

94.18 35.22 92.03 0
NNoc. w/o {𝐴} 95.63 75.29 92.19 1.01

NNoc. w/o {𝐴, Adapt 𝛼 } 97.62 98.14 85.09 4.82
NNoc. w/o {Adapt 𝛼 } 94.93 71.71 92.67 1.26

LS

NNoc. (Proposed)

97.19 91.51

93.99 32.34 93.15 0
NNoc. w/o {𝐴} 94.86 74.49 92.83 24.17

NNoc. w/o {𝐴, Adapt 𝛼 } 97.97 89.91 89.91 14.52
NNoc. w/o {Adapt 𝛼 } 94.25 24.3 95.01 0

PN

NNoc. (Proposed)

95.46 99.82

92.9 13.37 93.01 0
NNoc. w/o {𝐴} 94.3 36.79 91.66 0

NNoc. w/o {𝐴, Adapt 𝛼 } 96.02 98.34 94.21 74.54
NNoc. w/o {Adapt 𝛼 } 94.74 38.73 92.68 0

6.3 CycleGAN Output Quality vs. Training Data
Our results are consistent with the original CycleGAN paper [46]
that achieved high-quality results on small datasets with as few
as 400 images, for example, on the facades ↔ photographs and
artistic style transfer tasks, especially where domains are similar.
Likewise, we show in Figure 6 that we can recover relatively high
quality trigger reconstructions (see inset, and Figure 5) with only
200 images in each domain (we use 500 clean validation images in
domain 1 and 200 quarantined images in domain 2 in our imple-
mentation). Although the reconstruction mse is even lower with
1000 images, empirically, as also observed in prior work [43], exact
trigger reconstruction is not needed for backdoor unlearning.

Figure 6: The normalizedmean square error (nmse) between
reconstructed and actual triggers, and examples of recon-
structed backdoors (in inset), vs. amount of training data.

Figure 7: Examples of synthetic poisoned samples for post-
deployment treatment generated by CycleGAN approxima-
tion of poison(𝑥) for BadNet-SG. Top row: clean images;
Remaining rows: synthetic data produced by CycleGAN
trained on quarantined data collected using poison/clean
data ratio of 0.02, 0.06, 0.1, 0.5, respectively.

6.4 CycleGAN Output Quality vs. Poison/Clean
Data Ratio in Online Stream of Test Inputs

To qualitatively understand NNoculation’s post-deployment de-
fense, Figure 7 shows a selection of backdoor images generated by
the CycleGAN for BadNet-SG. Recall these are generated by feeding
clean validation data into the CycleGAN’s generator. Note that we
begin to see good trigger insertion after training the CycleGAN
on quarantined data collected from a 6% of poisoned images in
D𝑠𝑡𝑟𝑒𝑎𝑚 . As the CycleGAN is trained on more poison data in the
quarantined data, the trigger insertion becomes more reliable (the
last row of Figure 7).

6.5 Implications for Future Defenses
Empirical observations from our pre- and post-deployment defenses
have important implications for future defenses. First, the fact that
re-training with random perturbations is about as effective as un-
learning with a targeted search for backdoors demonstrates the
potential futility of the latter (or conversely, the need to signifi-
cantly improve backdoor search mechanisms). Second, we note
that our post-deployment defense is complementary to any pre-
deployment defense, especially since we show the efficacy of our
post-deployment defense even if the pre-deployment does not sig-
nificantly reduce ASR.

6.6 Limitations and Threats to Validity
NNoculation has been evaluated only in the context of BadNet at-
tacks in the image domain. Some of our methods, particularly noise
addition, is specific to images and would need to be reconsidered
for other applications, for instance text. Further, our attack model is
restricted to training data poisoning as an attack strategy; one could
imagine attackers that make custom changes to the weights of a
trained BadNet to further evade defenses. Finally, we have assumed
a computationally capable defender (although one that lacks access
to high-quality training data); one can imagine a setting where the
defender has only limited computational capabilities and cannot,
for instance, train a CycleGAN. Defenses such as fine-pruning are
more appropriate in that setting, but do not currently appear to
work across a broad spectrum of attacks. Neural Cleanse and ABS,
on the other hand, have relatively high computational costs.

6.7 Run-time Overhead Vs. Complexity
STRIP runs 1000 images through the network at run-time per test
image, resulting in a 1000x reduction in run-time throughput. Both
NeuralCleanse and ABS take upto an hour during pre-deployment
and nonetheless fail in several cases. In comparison, NNoculation’s
pre-deployment defense is quick (tens of minutes), and our on-
line CycleGAN runs in the background (i.e., in parallel) with the
deployed network, and thus does not add throughput cost. NNocu-
lation’s primary computational cost is in CycleGAN training (takes
roughly 5 hours), but this can happen while the deployed network
continues to quarantine suspicious inputs. Note that this compu-
tational effort is amortized over the network’s lifetime, yielding
the only defense that works against a range of attacks; and can be
further reduced in the future using advanced training methods, but
these were not the focus of this work.

7 RELATEDWORKS
Attacks There are two broad classifications of attacks on machine
learning [2], inference-time attacks (i.e., those that make use of
adversarial perturbations [10, 25, 38]) and training-time attacks, as
we explore in this work. BadNets [11] proposed the first backdoor
attack on DNNs through malicious training with poisoned data,
showcasing both targeted and random attacks where an attacker
aims to force a backdoored DNN to misclassify inputs with a spe-
cific trigger as the target label (targeted attacks) or a random label
(random attacks) in the context of pretrained online models and
transfer learning setting. There are two ways in which a DNN can
be backdoored: dirty-label attacks where training data is mislabelled

(such as those in [4, 27]), and clean-label attacks, where training
data is cleanly labeled, as in Poison Frogs [32].

Defenses We have already discussed and compared NNocula-
tion with several state-of-art defenses against backdoored neural
networks [4, 11, 24, 27, 28, 32]. We note that defenses against train-
ing time attacks on DNNs under different threat models have also
been considered, including defenses that assume the defender has
access to both clean and backdoored inputs pre-deployment [35,
39, 42] (i.e., data poisoning attacks that, as discussed in section 2,
are weaker than the backdooring threat that we consider), defenses
against backdoored federated learning [3, 37], and defenses for
simpler regression models [15]. However, none of these methods
directly translate to our threat model.

8 CONCLUSION
We proposed a novel two-stage Neural Network inoculation (NNoc-
ulation) defense against backdoored neural networks (BadNets).
In the pre-deployment stage, we use noise-augmentation and high
learning rates to activate a broad-spectrum of BadNet neurons,
allowing the neurons to be fine-tuned with clean validation data,
and alleviating the need for unrealistic assumptions on trigger
characteristics. Post-deployment, we quarantine data suspected of
containing of backdoors and use a CycleGAN to reverse engineer
the attacker’s poisoning function. This knowledge is then used
for targeted retraining of the BadNet to further reduce the attack
success rate. Our experiments comparing NNoculation to prior de-
fenses show that it is the only defense that works across a range of
backdoor attacks, while all other methods fail on one or multiple
attacks.

REFERENCES
[1] Berkeley Vision and Learning Center. 2020. Caffe Model Zoo. https://github.

com/BVLC/caffe/wiki/Model-Zoo.
[2] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise

of adversarial machine learning. Pattern Recognition 84 (Dec. 2018), 317–331.
https://doi.org/10.1016/j.patcog.2018.07.023

[3] Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. 2017. Machine learning
with adversaries: Byzantine tolerant gradient descent. In Advances in Neural
Information Processing Systems. 119–129.

[4] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
Backdoor Attacks on Deep Learning Systems Using Data Poisoning. arXiv
1712.05526 (2017).

[5] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Tar-
geted Backdoor Attacks on Deep Learning Systems Using Data Poisoning.
arXiv:1712.05526 [cs.CR]

[6] J. Dai, C. Chen, and Y. Li. 2019. A Backdoor Attack Against LSTM-Based Text
Classification Systems. IEEE Access 7 (2019), 138872–138878. https://doi.org/10.
1109/ACCESS.2019.2941376

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

[8] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter,
Helen M. Blau, and Sebastian Thrun. 2017. Dermatologist-Level Classification
of Skin Cancer with Deep Neural Networks. Nature 542 (2017), 115–118. https:
//doi.org/10.1038/nature21056

[9] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe,
and Surya Nepal. 2019. Strip: A Defence Against Trojan Attacks on Deep Neural
Networks. In Proceedings of the Annual Computer Security Applications Confer-
ence.

[10] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In Proceedings of the International Conference
on Learning Representations.

[11] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets:
Evaluating Backdooring Attacks on Deep Neural Networks. IEEE Access 7 (2019),
47230–47244.

[12] Alon Halevy, Peter Norvig, and Fernando Pereira. 2009. The Unreasonable
Effectiveness of Data. IEEE Intelligent Systems 24, 2 (2009), 8–12.

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://doi.org/10.1016/j.patcog.2018.07.023
https://arxiv.org/abs/1712.05526
https://doi.org/10.1109/ACCESS.2019.2941376
https://doi.org/10.1109/ACCESS.2019.2941376
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056

[13] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
2016. Densely Connected Convolutional Networks. arXiv:1608.06993 [cs.CV]

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
Image Translation with Conditional Adversarial Networks. CVPR (2017).

[15] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. 2018. Ma-
nipulating Machine Learning: Poisoning Attacks and Countermeasures for Re-
gression Learning. In 2018 IEEE Symposium on Security and Privacy (SP). 19–35.
https://doi.org/10.1109/SP.2018.00057

[16] Jing Yu Koh. 2011. ModelZoo. https://modelzoo.co.
[17] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi Tanaka, Jake Graving,

Christoph Reinders, Sarthak Yadav, Joy Banerjee, Gábor Vecsei, Adam Kraft,
Zheng Rui, Jirka Borovec, Christian Vallentin, Semen Zhydenko, Kilian Pfeiffer,
Ben Cook, Ismael Fernández, François-Michel De Rainville, Chi-Hung Weng,
Abner Ayala-Acevedo, Raphael Meudec, Matias Laporte, et al. 2020. imgaug.
https://github.com/aleju/imgaug. Online; accessed 01-Feb-2020.

[18] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[19] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning Multiple Layers of
Features from Tiny Images. (2009).

[20] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[21] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. 2021.
Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural
Networks. In International Conference on Learning Representations. https://
openreview.net/forum?id=9l0K4OM-oXE

[22] Min Lin, Qiang Chen, and Shuicheng Yan. 2014. Network In Network. In Pro-
ceedings of the International Conference on Learning Representations.

[23] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-Pruning: De-
fending Against Backdooring Attacks on Deep Neural Networks. In Proceedings
of the International Symposium on Research in Attacks, Intrusions, and Defenses.

[24] K. Liu, B. Tan, R. Karri, and S. Garg. 2020. Poisoning the (Data) Well in ML-Based
CAD: A Case Study of Hiding Lithographic Hotspots. In 2020 Design, Automation
Test in Europe Conference Exhibition (DATE). 306–309.

[25] Kang Liu, Haoyu Yang, Yuzhe Ma, Benjamin Tan, Bei Yu, Evangeline FY Young,
Ramesh Karri, and Siddharth Garg. 2019. Are Adversarial Perturbations a Show-
stopper for ML-Based CAD? A Case Study on CNN-Based Lithographic Hotspot
Detection. arXiv preprint arXiv:1906.10773 (2019).

[26] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and
Xiangyu Zhang. 2019. ABS: Scanning neural networks for back-doors by artificial
brain stimulation. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security.

[27] Yingqi Liu, Shiqing Ma, Yousra Asfer, Wen-Chuan Lee, Juan Zhai, WeihangWang,
and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks. In Proceedings
of the Annual Network and Distributed System Security Symposium.

[28] Anh Nguyen and Anh Tran. 2021. WaNet – Imperceptible Warping-based Back-
door Attack. arXiv:2102.10369 [cs.CR]

[29] Ximing Qiao, Yukun Yang, and Hai Li. 2019. Defending Neural Backdoors via
Generative Distribution Modeling. In Proceedings of Advances in Neural Infor-
mation Processing Systems. http://papers.nips.cc/paper/9550-defending-neural-
backdoors-via-generative-distribution-modeling.pdf

[30] Yuji Roh, Geon Heo, and Steven Euijong Whang. 2019. A Survey on Data Collec-
tion for Machine Learning: a Big DataAI Integration Perspective. IEEE Transac-
tions on Knowledge and Data Engineering (2019), 1–1.

[31] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. 2019. Hidden
Trigger Backdoor Attacks. arXiv:1910.00033 [cs.CV]

[32] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. 2018. Poison Frogs! Targeted Clean-Label
Poisoning Attacks on Neural Networks. In Proceedings of Advances in Neural
Information Processing Systems.

[33] Simon Tomas Karlsson. [n.d.]. CycleGAN - Keras Implementation. https://github.
com/simontomaskarlsson/CycleGAN-Keras.

[34] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. 2012. Man
vs. Computer: Benchmarking Machine Learning Algorithms for Traffic Sign
Recognition. Neural networks 32 (2012), 323–32.

[35] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. 2017. Certified Defenses for
Data Poisoning Attacks. arXiv:1706.03691 [cs.LG]

[36] Yi Sun, Xiaogang Wang, and Xiaoou Tang. 2014. Deep Learning Face Represen-
tation from Predicting 10,000 Classes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

[37] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H. Brendan McMahan.
2019. Can You Really Backdoor Federated Learning? arXiv:1911.07963 [cs.LG]

[38] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing Properties of Neural Networks.
In Proceedings of the International Conference on Learning Representations.

[39] Brandon Tran, Jerry Li, and Aleksander Madry. 2018. Spectral Signatures in
Backdoor Attacks. In Advances in Neural Information Processing Systems. 8011–
8021.

[40] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. 2019. Clean-Label
Backdoor Attacks. https://openreview.net/forum?id=HJg6e2CcK7

[41] Akshaj Veldanda and Siddharth Garg. 2020. On Evaluating Neural Network
Backdoor Defenses. arXiv:2010.12186 [cs.LG]

[42] Binghui Wang, Xiaoyu Cao, Jinyuan jia, and Neil Zhenqiang Gong. 2020. On
Certifying Robustness against Backdoor Attacks via Randomized Smoothing.
arXiv:2002.11750 [cs.CR]

[43] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. 2019. Neural Cleanse: Identifying and Mitigating
Backdoor Attacks in Neural Networks. In Proceedings of the IEEE Symposium on
Security and Privacy.

[44] Lior Wolf, Tal Hassner, and Itay Maoz. 2011. Face Recognition in Unconstrained
Videos withMatched Background Similarity. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.

[45] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter, and Bo Li. 2020.
Detecting AI Trojans Using Meta Neural Analysis. arXiv:1910.03137 [cs.AI]

[46] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired
Image-to-Image Translation using Cycle-Consistent Adversarial Networks. In
Proceedings of the IEEE International Conference on Computer Vision.

A APPENDIX
A.1 Further Study of Pre-deployment
To evaluate the sensitivity of pre-deployment against training hy-
perparameters, we prepare additional BadNet variants bymodifying
different training hyperparameters during BadNet training. These
settings are presented in Tables 14, and 15. We use the heuristic
described in section 4 to select \𝑎𝑢𝑔 for each BadNet, and report
the change in CA and change in ASR in Table 16. We find that
in most cases, the CA degradation is ≈ 3% as desired, with ASR
reduction ranging from −66.5% to −100%; i.e., in some settings,
the pre-deployment defense is able to remove the backdoor be-
havior entirely. These results appear to support the idea that our
pre-deployment defense method is broadly applicable in spite of
varying attacker BadNet training hyperparameters.

Table 14: Hyperparameter variants for BadNet-SG.

Variants
hyperparameter ORIG BATCH ATK Type [23]

batch size 1283 256 1283 1283
epochs 200 200 200 200
learning rate 1 1 1 0.001
optimizer ADADELTA ADADELTA ADADELTA Adam
preprocessing divide by 255 divide by 255 divide by 255 raw
attack type 2-step 2-step 1-step 2-step

Table 15: Hyper-parameter variants for BadNet-PN.

Variants
hyperparameter ORIG RAW LR SGD

batch size 32 32 32 32
epochs 15 15 15 15
learning rate 0.001 0.001 0.003 0.01
optimizer adam adam adam SGD
preprocessing divide by 255 raw divide by 255 divide by 255
attack type 2-step 2-step 2-step 2-step

A.2 Comparision with Neural Attention
Distillation (NAD)

(NAD) is a very recent backdoor defense proposed by Li et al. [21].
We observe that it suffers a 9% drop in CA and yet has an high ASR

https://arxiv.org/abs/1608.06993
https://doi.org/10.1109/SP.2018.00057
https://modelzoo.co
https://github.com/aleju/imgaug
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=9l0K4OM-oXE
https://openreview.net/forum?id=9l0K4OM-oXE
https://arxiv.org/abs/2102.10369
http://papers.nips.cc/paper/9550-defending-neural-backdoors-via-generative-distribution-modeling.pdf
http://papers.nips.cc/paper/9550-defending-neural-backdoors-via-generative-distribution-modeling.pdf
https://arxiv.org/abs/1910.00033
https://github.com/simontomaskarlsson/CycleGAN-Keras
https://github.com/simontomaskarlsson/CycleGAN-Keras
https://arxiv.org/abs/1706.03691
https://arxiv.org/abs/1911.07963
https://openreview.net/forum?id=HJg6e2CcK7
https://arxiv.org/abs/2010.12186
https://arxiv.org/abs/2002.11750
https://arxiv.org/abs/1910.03137

Noise (%)

C
le

an
 A

cc
ur

ac
y

(%
)

85

90

95

100

10 20 30 40 50 60

Baseline

Target

α = 1

α = 3

α = 3.5

α = 4

(a) BadNet-SG CA

Noise (%)

C
le

an
 A

cc
ur

ac
y

(%
)

88
90
92
94
96
98

100

10 20 30 40 50 60

Baseline

Target

α = 1

α = 3

α = 4

α = 5

α = 6

(b) BadNet-LS CA

Noise (%)

C
le

an
 A

cc
ur

ac
y

(%
)

75

80

85

90

95

100

10 20 30 40 50 60

Baseline

Target

α = 0.001

α = 0.003

α = 0.004

α = 0.006

(c) BadNet-PN CA

Noise (%)

A
S

R
 (%

)

0

25

50

75

100

10 20 30 40 50 60

α = 1

α = 3

α = 3.5

α = 4

(d) BadNet-SG ASR

Noise (%)

A
S

R
 (%

)

0

20

40

60

10 20 30 40 50 60

α = 1

α = 3

α = 4

α = 5

α = 6

(e) BadNet-LS ASR

Noise (%)

A
S

R
 (%

)

0

25

50

75

100

10 20 30 40 50 60

α = 0.001

α = 0.003

α = 0.004

α = 0.006

(f) BadNet-PN ASR

Figure 8: Effect of pre-deployment treatment on CA (on evaluation data) and ASR (on test data) under varying 𝛼 and 𝛾 settings.
Table 17: CycleGAN discriminator architecture [46]. Kernel
size is 4×4, padding is ‘Same’ and LeakyReLU, 𝛼 = 2.

Layer Name Filters Stride Normalization Activation

c64 64 2 False LeakyReLU
c128 128 2 True LeakyReLU
c256 256 2 True LeakyReLU
c512 512 1 True LeakyReLU
Conv 1 1 False None

Table 18: CycleGAN generator architecture [46]. Each row is
a Convolution-InstanceNorm-ReLU layer.

Layer Name Filters Kernel Stride Padding

c7s1-64 64 7×7 1 Valid
d128 128 3×3 2 Same
d256 256 3×3 2 Same

R256 (9 times) 256 3×3 1 Valid
256 3×3 1 Valid

u128 128 3×3 1/2 Valid
u64 64 3×3 1/2 Valid

c7s1-3 3 7×7 1 Valid

Table 16: Pre-deployment defense of BadNet-SG, PN vari-
ants.

\𝑎𝑢𝑔 for BadNet-SG \𝑎𝑢𝑔 for BadNet-PN
BATCH ATK [23] RAW LR SGD

CA change (%) −3.54 −3.8 −3.7 −3.5 −1.7 −0.3
ASR change (%) −90.35 −93.0 −69.5 −66.0 −87.8 −100

of 75.66% and 19.13% on lipstick and sunglasses triggers respectively
for YouTube-MTMTA. NAD is also ineffective on BadNet CIFAR10-
TCA with an ASR = 99%.

A.3 CycleGAN Details
To train the CycleGAN during post-deployment defense, we use the
same architecture and training hyper-parameters from the original
CycleGAN paper [46] which demonstrated impressive unpaired
image-to-image translation for various tasks. We adopt CycleGAN-
Keras implementation from [33] repository. The generator archi-
tecture, in Table 18, has 3 convolutional layers, 9 residual blocks,
2 fractionally strided and one convolutional layer. The discrim-
inator, in Table 17, uses 70×70 PatchGANs [14] and produces a
1-dimensional output.

We train all the networks from scratch for 200 epochs using
Adam optimizer [18]. The learning rate is held constant at 0.0002
for first 100 epochs and then lineary decay to zero for the last
100 epochs. During optimizing the discriminator, the objective is
halved to ensure that the discriminator learns slowly relative to the
generator.

	Abstract
	1 Introduction
	2 Threat Model
	2.1 Attacker's Goal and Capabilities
	2.2 Defender's Goals and Capabilities
	2.3 Security Metrics

	3 NNoculation Defense
	3.1 Overview
	3.2 Pre-Deployment Defense
	3.3 Post-Deployment Defense

	4 Experimental Setup
	4.1 BadNet Preparation and Attack Settings
	4.2 NNoculation Parameters
	4.3 Baselines for Comparison

	5 Experimental Results
	5.1 Efficacy of Pre-deployment Defense
	5.2 Efficacy of Post-deployment Defense
	5.3 Comparisons with prior work
	5.4 Performance Under Adaptive Attacks
	5.5 Sensitivity to Dataset Size

	6 Discussion
	6.1 Performance on Additional Attacks
	6.2 Ablations
	6.3 CycleGAN Output Quality vs. Training Data
	6.4 CycleGAN Output Quality vs. Poison/Clean Data Ratio in Online Stream of Test Inputs
	6.5 Implications for Future Defenses
	6.6 Limitations and Threats to Validity
	6.7 Run-time Overhead Vs. Complexity

	7 Related Works
	8 Conclusion
	References
	A Appendix
	A.1 Further Study of Pre-deployment
	A.2 Comparision with Neural Attention Distillation (NAD)
	A.3 CycleGAN Details

