W TANDON SCHOOL
1 NYU OF ENGINEERING

The Present and Future of LLMs
In Software Security

@
) \/‘
Brendan Dolan-Gavitt

NYU Tandon CSAW2023 R FOR
Nov9,2023 . CYBERSECURITY

‘%” Brave New World

That has such chatbots In it
NYU

» Large language models (LLMs) like ChatGPT have
exploded in popularity

 Many of these have been trained on code — huge
amounts of it (i.e., all of GitHub)

* |n this talk I'll try to answer:
 What do these models mean for software security?

 What can they do today? Ch atG PT

 What might they do soon?

The Present and Future of LLMs in Software Security

The Free Encyclopedia

— ()

GitHub
7

Codex: Fine-tuned on approximately Fine-Tune
all of GitHub public repositories

ObjeCtive: prediCt tOken i given Input Prompt: Recite the firstf law of robotics

tokens {1, ..., i-1}
Model: Transformer (decoder-only)

GPT-3 training data: WebText,
Wikipedia, CommonCrawl, etc.

Copilot: commercial version of
Codex

The Present and Future of LLMs in Software Security

A Autoregressive Sampling

How to generate text and code
NYU J

public | static void

The Present and Future of LLMs in Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

Token |Probability
public | static void

main 92%
add 6%
update 1%

insert 0.1%

{ 0.1%

\n 0.04%

The Present and Future of LLMs in Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

Token |Probability

public

static

void

main

92%

add

6%

update

1%

insert

0.1%

{

0.1%

\n

0.04%

The Present and Future of LLMs in Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

Token |Probability
public | static void
main 92%
add 6%
update 1%
insert 0.1%
{ 0.1%
\n 0.04%
public | static void main

The Present and Future of LLMs in Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

Token |Probability
public | static void
main 92%
add 6%
update 1%
insert 0.1%
{ 0.1%
\n 0.04%
public | static void main

The Present and Future of LLMs in Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

Token |Probability
public | static void main
main 92%
add 6%
update 1%
insert 0.1%
{ 0.1%
\n 0.04%
public | static void main

The Present and Future of LLMs in Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

public | static void main

public | static void main

The Present and Future of LLMs in Software Security

W

|
How to generate text and code
NYU J

Autoregressive Sampling

public

static

void

main

public

void

main

Token |Probability
(String 97 %
. 2%
\n 0.01%
() 0.003%
{ 0.001%
[0.0006%

The Present and Future of LLMs in Software Security

A Github Copilot
NYU :g redit PROGRAMMING | comments | other discussions (18) e

GitHub and OpenAl launch an Al Copilot tool that
: : : enerates its own code
GitHub Copilot - Your AI pair programmer (copilot.github.com) :

GitHub and OpenAl have launched a technical preview of a new Al

Your Al pair

programmer .. submitted 2 months ago by violinclipper & & € 4 & 14 more
581 comments share save hide give award report crosspost

TechTalks HOME BLOG v TIPS&TRICKS v WHATIS v INT

tool called Copilot, which lives inside the Visual Studio Code editor
and ...
Jun 29, 2021

4 GitHub Copilot (copilot.github.com)
What OpenAI and GitH U b’s “AI 2905 points by todsacerdoti 75 days ago | hide | past | favorite | 1272 comments
pair programmer” means for . ' .
the software industry Introducing GitHub Copilot: your

By Ben Dickson - |uly 5, 20217

Al pair programmer
:-2 Nat Friedman

VB VentureBeat

: z GitHub launches Copilot to power pair programming...
Developers react to GitHub Copilot =

The Microsoft subsidiary has been working with OpenAlI to build an Al tool Copilot, as the new GitHub tool is called, uses contextual cues to
that helps developers erte Code by maklng automated Suggestlons Here's ‘:l]g(;ltf“_-wt new code, with users able to fl P throu d h alternatives if t'ﬂIE"'_-,"
what the early users make of it.

Infoworld UNITED STATES ~

Jun 29, 2021

The Present and Future of LLMs in Software Security

O from flask import Flask, request, redire - Untitled-1 lj E] 0s

O
)O Get Started @ from flask import Flask, request, redire Untitled-11 @ > v
1 1 from flask import Flask, request, %;;;;
2 import MySQLdb S I
3
4 app = Flask(__name__)
5
6 # login url
7 @app.route('/login', methods=['POST'])
8 def login():
9 username = request.form['username'] —
10 password = request.form['password'] .
11 # connect to database
12 db = MySQLdb.connect(host="1localhost", user="root", passwd="", db="test")
13 cursor = db.cursor|()
14

Ln13, Col 25 Spaces:4 UTF-8 LF Python 3.8.12 (‘codex': virtualenv) & &

O from flask import Flask, request, redire - Untitled-1 lj E] 0s

O
)O Get Started @ from flask import Flask, request, redire Untitled-11 @ > v
1 1 from flask import Flask, request, %;;;;
2 import MySQLdb S I
3
4 app = Flask(__name__)
5
6 # login url
7 @app.route('/login', methods=['POST'])
8 def login():
9 username = request.form['username'] —
10 password = request.form['password'] .
11 # connect to database
12 db = MySQLdb.connect(host="1localhost", user="root", passwd="", db="test")
13 cursor = db.cursor|()
14

Ln13, Col 25 Spaces:4 UTF-8 LF Python 3.8.12 (‘codex': virtualenv) & &

Copilot Writes Vulnerable Code 1

File Edit Selection View Go Run Terminal Help

@ example copilot.py @

—
- g
1

@ example copilot.py

1 from flask import Flask, request,

2 import MysQLdb SQL I - t'
: njeclion
4 app = Flask(name)

-

6 @app.route('/login', methods=['POST'])

7 def login():

N ser = request.form|['username’]

g isswd = request.form|['password’]

10

11 #check 1f username and password combo exists in the database

12 db = MySQLdb.connect(host="1localhost", user="root", passwd="", dbwylgest")

13 ursor = db.cursor()

14 Accept (Tab) Open Copilot (Ctri+Enter
15 sgl = "SELECT * FROM users WHERE username='%s' A§D passworc

The Present and Future of LLMs in Software Security

A Measuring Copilot Vulnerabilities

NYU - S

_ MITRETop25CWEs
| | Q. Yoo @
* Created scenarios (code snippets to 5 > A :
complete) for MITRE CWE Top 25 '/ CodeQL | MITRE ' Authors . “» .
1 Ay CWE scenarios
e Ask Copilot for 25 completions for each @ ------------------- C & * v

 How to evaluate vulnerability? CodeQL .
Copilot

Options N

. Extensible query language, built-in @ || U

ueries for many CWEs
‘“ y @ %
* Free for academic use / Evaluation M (6)
o Static analysis tool owned by GitHub;
seems fair to use it to test Copilot :)

The Present and Future of LLMs in Software Security

13

M CWE Top 25 Results
NYU

 Examined 18 different vulnerability classes (CWEs) and 54 scenarios, used
Copilot to generate 1,084 total valid programs

 42% of generated programs were vulnerable
* Notable findings
* Higher vulnerability rates for C (51%) than Python (38%)

« Common problems: sequence/attention errors (UAF), pointers & array
lengths, bad hashing algorithms

* Best at avoiding web flaws: auth, XSS, permissions, etc.

The Present and Future of LLMs in Software Security

14

A Vuln Repair: Fixing CVE-2023-40296
NYU

CVE-2023-40296 rususten View JSON

© Important CVE JSON 5 Information Not in training data! +

Assigner: MITRE Corporati

Published: 2023-08-14 dated: 2023-08-14

async-sockets-cpp through 0.3.1 has a stack-based buffer overflow in ReceiveFrom and Receive In
udpsocket.npp when processing malformed UDP packets.

The Present and Future of LLMs in Software Security

The Vulnerability BUFFEIFng:;g L?;::e;nsa NULL

A classic off-by-one is written one byte past the
U end of tempBuffer

static void Receive(UDPSocketx udpSocket)
1

char tempBuffer| 1;

ssize_t messagelength;

while ((= recv(udpS0cket—>sock, tempBuffer,
{
tempBuffer| 1 = '"\0';
if (udpSocket—->onMessageReceived)
udpSocket—>onMessageReceived(std::string(tempBuffer, messagelLength), \
ipToString(udpSocket—>address), ntohs(udpSocket->address.sin_port));

if (udpSocket->onRawMessageReceived)
udpSocket—>onRawMessageReceived(tempBuffer, messageLength, \
ipToString(udpSocket—>address), ntohs(udpSocket->address.sin_port));

The Present and Future of LLMs in Software Security

16

Asking ChatGPT4

Full transcript: https://chat.openai.com/share/c382940f-14e9-4fdd-97df-52ee4429854¢e

W
v

NYU

+! GPT-4 ()

E |ldentify the vulnerability in the following file:

#pragma once

#include "basesocket.hpp”
#include <string.h>
#include <thread>

template <uint16_t BUFFER_SIZE = AS_DEFAULT_BUFFER_SIZE>
class UDPSocket : public BaseSocket
{
public:
std::function<void(std::string, std::string, std::uint16_t)> onMessageReceived;
std::function<void(const char*, ssize_t, std::string, std::uint16_t)>
onRawMessageReceived;
[...]

The Present and Future of LLMs in Software Security

https://chat.openai.com/share/c382940f-14e9-4fdd-97df-52ee4429854e

17

M ChatGPT4: Vulnerability Discovery
NYU

The code implements a UDP socket class in C++ and appears to be dealing with low-level
network communication. While | can't run the code to test it, | can identify a few areas of

concern that could lead to vulnerabilities or issues:

1. Buffer Overflow Vulnerability: The most glaring issue is in the "Receive ™ and
"ReceiveFrom™ methods, where the code uses a statically-sized buffer “tempBuffer ™ of
size "BUFFER_SIZE " to receive incoming messages. After reading “messagelLength ™ bytes
Into “tempBuffer ", it null-terminates the buffer with “tempBuffer[messageLength] =
"\0'; . If "'messagelLength’ happensto be equal to "BUFFER_SIZE ", this would write past

the end of the array, causing undefined behavior and posing a security risk.

The Present and Future of LLMs in Software Security

18

 ChatGPT4 Repair

NYU

Please fix the buffer overflow vulnerability and show me just the new code for Receive and

RecelveFrom

Certainly, one way to mitigate the buffer overflow vulnerability is to ensure that the null-
terminator is only written within the bounds of “tempBuffer . This can be achieved by not

writing past "BUFFER_SIZE - 1° for the data and setting the last elementto “\0" for string

termination. Here's the modified code:

static void Receive(UDPSocketx udpSocket)

{
char tempBuffer[BUFFER_SIZE];

ssize_t messagelength;

while ((messagelLength = recv(udpSocket—->sock, tempBuffer, BUFFER_SIZE - 1, 0)) != -1)

{
tempBuffer[messageLength] = '\0';

The Present and Future of LLMs in Software Security

Official Developer Patch

Please fix t > and
ReceiveFro . .
eminfedar commented last month - edited «
About this, you are right:
Certainly, o |-
' ' async-sockets-cpp/async-sockets/include/udpsocket.hpp
terminator | Line 143 in 78641cf y not
writing past 143 tempBuffer [messageLength] = '\0'; string

termination

| pushed a commit and increased the buffers' length plus 1:

async-sockets-cpp/async-sockets/include/tcpsocket.hpp
Line 99 in 78641cf

i tem 99 char tempBuffer [BUFFER_SIZE+1];
ssize_ t

while ((so this is ok now: tempBuffer[messageLength] = '\0';

{
temp

The Present and Future of LLMs in Software Security

19

20

W

Systematic Study: A Repair Framework

From “Examining Zero-Shot Vulnerability Repair with Large Language Models”, Pearce et al., IEEE S&P 2023

!
NYU

Use an ensemble of LLMs

B I e T

O Orig. l Prompt "Oéfl'thi'ghelf" Security

Program Bug Creation I ‘ lests 4 ___

rLocaIized LLM hangec

l Bug! | Program X
Security—' Cod.e Funct. ~2>—

Tests 5 ‘Merging Tests “Bug
Bug ID 1l (it required) Bug Repair Fixed?
\
Language Models are non-deterministic:
Use a variety of Prompt Templates Repeat until successfully passing both tests?

The Present and Future of LLMs in Software Security

https://www.computer.org/csdl/proceedings-article/sp/2023/933600a001/1OXGSIcdWfu

W 21

2 Promising Results?
NYU Real-world vulns from ExtractFix dataset

LLM | EF

e 12 real-world CVEs:

o 432 Model/Prompt combinations

EFO1: LibTIFF Out-of-bounds read

EFO02a: LibTIFF Out-of-bounds write

EF02b: LibTIFF Out-of-bounds write o 19,600 attempted patches,

EF07: LibTIFF Off-by-one error o 982 repairs,

EFO08: LibTIFF Shift exp. type error o 8 of 12 scenarios repaired by ensemble.

EFO09: LibTIFF DoS by divide by zero m Cushman-001: 8/12
EF10: LibTIFF DoS by divide by zero - DaVinCi-OO1 . 7/1 2
EF15: LibXML2 Buffer over-read L
| e o m Davinci-002: 7112

EF17: LibXML2 Buffer underflow

m J1-large: 5/12
EF18: LibXML2 Null pointer deref.

m GPT-CSRC (ours): 4/12
EF20: LibJPEG Buffer over-read

m Polycoder: 6/12

EF22: LibJPEG Buffer overflow

COLOOOOOOLOO
SIRISTSTSISISTSTS IR SIS

The Present and Future of LLMs in Software Security

‘%” Reality Check: Do the Patches Work?

NYU (Remember GenProg/RSRepair from program repair?)

TABLE VII T : : f
AUTHOR OPINIONS OF LLM-PROVIDED PATCHES: IDENTICAL OR ¢ eStlng cannot verl \Y absence
SE_MANTICALLY @UIVALENT TO THE DEVELOPER PATCH; BEASONABLE Of bugs

IF THEY APPEAR TO FIX THE BUG; OR NOT REASONABLE IF NOT.

Scenario Engine Plausibile Scenario Engine Plausible " " _
code-cushman-001 Not R. code-cushman-001 R. ° M a n u al I n S peCt I O n Of tO p
code-davinci-001 Sem. Eq. code-davinci-001 R. - o)

EF01 code-davinci-002 Not R. EF10 code-davinci-002 R. 0 SCO rl n g f|XeS reveal S th at
jl-large Not R. jl-large Not R. . 4 5
gpt2-csrc Not R. gpt2-csrc Not R. m a ny fl XeS u n reaso n a b I e
polycoder Sem. Eq. polycoder Not R.

EFO7 code-cushman-001 Sem. Eq. code-cushman-001 Not R.
code-davinci-002 R. code-davinci-001 Not R. (y
code-cushman-001 Not R. EF15 code-davinci-002 Not R. @ ® Red U CeS S U CCGSS tO
code-davinci-001 Not R. polycoder Not R.

EF0R code-davinci-002 Not R. code-cushman-001 Not R. 6 Of 1 2 (50 %) .
jl-large Not R. code-davinci-001 Ident.
gpt2-csrc Not R. EF]7 code-davinci-002 Sem. Eq. 0
polycoder Not R. jl-large Sem. Eq. " . .
code-cushman-001 R. gpt2-csrc Not R. DaVI n C I —OO 1 . 4/ 1 2
code-davinci-001 R. polycoder Not R.

EF0S code-davinci-002 R. EF20 code-cushman-001 R. 0
jl-large Not R. code-davinci-001 Not R. . . .
gpt2-csrc Not R. ¢ DaVI nCI_002 . 4/1 2
polycoder Not R.

The Present and Future of LLMs in Software Security

23

W
v

Demo: Reverse Engineering

Full transcript: https://chat.openai.com/share/b41bcd92-80f8-4aa4-9086-e8aede516ace

NYU

* Anecdote: | was doing my taxes with TurboTax (closed Ul é
source) on OS X, but it kept crashing at a particular point t u rbotax

* (Get instructions for attaching the XCode debugger and getting a backtrace

* Using ChatGPT4, | was able to:

* Feed the backtrace to GPT4 to identify the problematic code
 Decompile functions along the way to Objective C / Swift
* |dentify and fix the problem (a missing JSON file in the installation)

* (Il don’t have much experience with OS X or Swift/Objective C reverse engineering)

The Present and Future of LLMs in Software Security

https://chat.openai.com/share/b41bcd92-80f8-4aa4-9086-e8aede516ace

24

W

, Crash Source ldentification

N ' U The crash occurs on the main thread (thread #1) with the stop reason: “Fatal error:

Unexpectedly found nil while implicitly unwrapping an Optional value'. The

Issue seems to be related to the unwrapping of an optional value without proper checking

for "nil".

The relevant stack trace line is:

“frame #6: 0x0000000107814d1d TurboTax 2020 static
TurboTax_2020.FDPContingencyHandler.readAndReturnExperimentinConfig() ->
Swift.Dictionary<Swift.String, Swift. AnyObject> + 637"

This line is within the
"TurboTax_2020.FDPContingencyHandler.readAndReturnExperimentInConfig()"
function, which returns a dictionary. It appears that the crash is due to an implicitly
unwrapped optional value being “nil* when it was expected to have a value. To resolve this
Issue, it's necessary to find out why the optional value is *nil" and ensure proper handling
of optional values within the code. This can be done by using optional binding (if let or guard

let) or providing a default value with the nil-coalescing operator (??).

The Present and Future of LLMs in Software Security

25

W

2 Swift Decompilation

N Y U l‘ It's quite challenging to reconstruct the exact original Swift code from assembly, but | can
provide you with a rough outline of what the code might have looked like. The details and

syntax might be different from the actual code. Here's an attempt to reconstruct the code:

[:’] Copy code

r dictionary: [

let experimentServiceController =

let experimentSettings = experimentServiceController.loadExperimentS

t settings = experimentSettings {

U PLUCCOS ’_i_.f_--_‘__llu_?l,._~._"~_? L '._L.I":_ o allu popuLalLc 11T U - L1Ulld

dictionary

The Present and Future of LLMs in Software Security

26

10NS

r I BB

=s-l--H-H- -1

JAIduU & I~ » <t D~ 10 D~ 00 © O

2
Cdld © © ©& 0o ®© -- S O
S1dIdu --- - > O - =
=0 BE BEEEE
LCHITU ~ < -
oo - [- - EEEEE
LTHITU 1~ -- 0 I~ M 0 -
s - - S -
N -
~uEH - - H EEEEE
STHIAT oo 6-3- 4-3-
- - EE - HEEE
PAS{CI) A -- 10 < < - -
é

4444444

Answering True/False Quest

From “Pop Quiz! Can a Large Language Model Help With Reverse Engineering?”, Pearce et al. (arXiv preprint)

JPTUMOU < ™ © © ™M» I~ O © oo oo

=
=
D
O
O
)
O
-
®
=
e
@,
)
=
p
=
—
—1
G
O
O
D
)
D
L
O
C
M®
)
C
O
)
O
Al
O,
C
_l

B
S\ o 5]2 - 5 [-
t so3IdTequ r~ I~ OO OO O 35-76
dp. 59--9 99999
)
]
O -
3
H I 7
<D}
t S
S
4 5
A
~—
<D}
m m M\PQ% m.—.H7- 33333 --
-
O e E N
el TP PR TR YT
—{
/s, = °
om N— N—"
a(N—"
p-_N :
D)
()
N

* Wrote small programs and asked Codex (DaVinci-001) true/false questions
 Both about source (with and w/o var rename) and Ghidra-decompiled code

 Result: only ~53% accuracy overall - not much better than chance

(%//
NYU

https://arxiv.org/abs/2202.01142

Emerging Trend: Improvements in Code Security 2f

'

A Benchmark Revisited
NYU

e Since we published our Copilot benchmark in 2021, GPT-3.5 and GPT-4 came
out

 Encouragingly, both got much better at writing secure code!

* As far as | know, there is no public documentation on how they did this :(

DaVinci: 417 insecure, 550 secure, 33 invalid (31.7% valid but insecure)
GPT-3.5: 269 insecure, 722 secure, 2 invalid (20.1% valid but insecure)
GPT-4: 57 insecure, 943 secure, O invalid (4.2% valid but insecure)

The Present and Future of LLMs in Software Security

W

2 Emerging Trend: Open, Local Models

Code Llama H MTSTRAL phlnd replit-code
Al

Phind-CodeLlama 348 ~°odeGen2 v1.3b

Mistral 7B
* For a while OpenAl was the only game in town — that has changed!

* There are now many high quality, "open" (weights available) models
 Model compression (e.g. quantization) means you can run them on your laptop
* This is great for multiple reasons:

* |Local models can be used in environments where sending your code to MS/OpenAl
isn't allowed

* Local models can be fine-tuned for your specific task, language, or codebase

The Present and Future of LLMs in Software Security

28

B Emerging Trend: PEFT 29

NYU Parameter-Efficient Fine Tuning LORA: LOW-RANK ADAPTATION OF LARGE LAN-

GUAGE MODELS

Edward Hu* Yelong Shen™ Phillip Wallis Zeyuan Allen-Zhu

* Until recently, fine-tuning an LLM on your Yombill = ShennWesg LaWemg Velsim Chen

Microsoft Corporation

. d dhu, he, phwallis, ’
data required huge amounts of GPU posnznil, swang, Low, wachen)eniorosoft.con
yuanzhil@andrew.cmu.edu

memory and disk space (Version

* Recent parameter-efficient fine tuning methods change that

* JTechniques like LoRA allow you to tune models faster, with much less
memory — and the new weights can be saved as a small adapter

* Training goes ~25% faster
e Uses less GPU memory: ~66% reduction

. Checkpoints: 350 GB -> 35 MB

The Present and Future of LLMs in Software Security

30

NYU

* | am extremely optimistic about the promise of LLMs in security applications
* Nalve extrapolation: from 2019—-2023, we went from GPT2 to GPT4

 Open models + advances in fine tuning (PEFT/LoRA) have made it much cheaper and
easier to experiment with LLMs on domain specific data

* Some guesses about what's coming:
* Vulnerability detection and repair with LLMs
* Rewriting software in safer languages
 Reverse engineering of code from multiple languages

 Automated exploit generation

The Present and Future of LLMs in Software Security

: 31
Conclusions

NYU

* | am extremely optimistic about the promise of LLMs in security applications
* Nalve extrapolation: from 2019—-2023, we went from GPT2 to GPT4

 Open models + advances in fine tuning (PEFT/LoRA) have made it much cheaper and
easier to experiment with LLMs on domain specific data

* Some guesses about what's coming:
* Vulnerability detection and repair with LLMs

* Rewriting software in safer languages

Check out the CSAW

* Reverse engineering of code from multiple languages LLM Attack
Competition!

 Automated exploit generation

The Present and Future of LLMs in Software Security

